REFLECTIONS IN A EUCLIDEAN SPACE

YOUR NAME HERE

18.099 - 18.06 CI. Due on Monday, May 10 in class.

Write a paper proving the statements formulated below. Add your own examples, asides and discussions whenever needed.

Let V be a finite dimensional real linear space.

Definition 1. A function $\langle , \rangle : V \times V \to \mathbb{R}$ is a bilinear form on V if for all $x_1, x_2, x, y_1, y_2, y \in V$ and all $k \in \mathbb{R}$,

$$\langle x_1 + kx_2, y \rangle = \langle x_1, y \rangle + k \langle x_2, y \rangle$$
, and
 $\langle x, y_1 + ky_2 \rangle = \langle x, y_1 \rangle + k \langle x, y_2 \rangle.$

Definition 2. A bilinear form \langle , \rangle in V is symmetric if $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in V$. A symmetric bilinear form is nondegenerate if $\langle a, x \rangle = 0$ for all $x \in V$ implies a = 0. It is positive definite if $\langle x, x \rangle > 0$ for any nonzero $x \in V$. An inner product on V is a symmetric positive definite bilinear form on V.

Theorem 3. Define a bilinear form on $V = \mathbb{R}^n$ by $\langle e_i, e_j \rangle = \delta_{ij}$, where $\{e_i\}_{i=1}^n$ is a basis in V. Then \langle , \rangle is an inner product in V.

Definition 4. A Euclidean space is a finite dimensional real linear space with an inner product.

Theorem 5. Any *n*-dimensional Euclidean space V has a basis $\{e_i\}_{i=1}^n$ such that $\langle e_i, e_j \rangle = \delta_{ij}$.

Hint: Use the Gram-Schmidt orthogonalization process.

Below $V = \mathbb{R}^n$ is a Euclidean space with the inner product \langle , \rangle .

Definition 6. Two vectors $x, y \in V$ are orthogonal if $\langle x, y \rangle = 0$. Two subspaces $U, W \in V$ are orthogonal if $\langle x, y \rangle = 0$ for all $x \in U$ and $y \in W$.

Check that if U and W are orthogonal subspaces in V, then $\dim(U) + \dim(W) = \dim(U+W)$.

Definition 7. The orthogonal complement of the subspace $U \subset V$ is the subspace $U^{\perp} = \{y \in V : \langle x, y \rangle = 0, \text{ for all } x \in U\}.$

Date: July 18, 2004.

Definition 8. A hyperplane $H_x \subset V$ is the orthogonal complement to the one-dimensional subspace in V spanned by $x \in V$.

Theorem 9. (Cauchy-Schwartz). For any $x, y \in V$,

 $\langle x, y \rangle^2 \le \langle x, x \rangle \cdot \langle y, y \rangle,$

and equality holds if and only if the vectors x and y are linearly dependent.

We will be interested in the linear mappings that respect inner products.

Definition 10. An orthogonal operator in V is a linear automorphism $f: V \to V$ such that $\langle f(x), f(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$.

Theorem 11. If f_1, f_2 are orthogonal operators in V, then so are the inverses f_1^{-1} and f_2^{-1} and the composition $f_1 \circ f_2$. The identity mapping is orthogonal.

Remark 12. The above theorem says that orthogonal operators in a Euclidean space form a group, that is, a set closed with respect to compositions, containing an inverse to each element, and containing an identity operator.

Example 13. Describe the set of 2×2 matrices of all orthogonal operators in \mathbb{R}^2 , and check that they form a group with respect to the matrix multiplication.

Now we are ready to introduce the notion of a reflection in a Euclidean space. A reflection in V is a linear mapping $s: V \to V$ which sends some nonzero vector $\alpha \in V$ to its negative and fixes pointwise the hyperplane H_{α} orthogonal to α . To indicate this vector, we will write $s = s_{\alpha}$. The use of Greek letters for vectors is traditional in this context.

Definition 14. A reflection in V with respect to a vector $\alpha \in V$ is defined by the formula:

$$s_{\alpha}(x) = x - \frac{2\langle x, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha.$$

Theorem 15. With the above definition, we have:

- (1) $s_{\alpha}(\alpha) = -\alpha$ and $s_{\alpha}(x) = x$ for any $x \in H_{\alpha}$;
- (2) s_{α} is an orthogonal operator; (3) $s_{\alpha}^2 = Id.$

Therefore, reflections generate a group: their compositions are orthogonal operators by Theorem 11, and an inverse of a reflection is equal to itself by Theorem 15. Below we consider some basic examples of subgroups of orthogonal operators obtained by repeated application of reflections.

Example 16. Consider the group S_n of permutations of n numbers. It is generated by transpositions t_{ij} where $i \neq j$ are two numbers between 1 and n, and t_{ij} sends i to j and j to i, while preserving all other numbers.

The compositions of all such transpositions form S_n . Define a set of linear mappings $T_{ij} : \mathbb{R}^n \to \mathbb{R}^n$ in an orthonormal basis $\{e_i\}_{i=1}^n$ by

 $T_{ij}e_i = e_j; \ T_{ij}e_j = e_i; \ T_{ij}e_k = e_k, k \neq i, j.$

Then, since any element $\sigma \in S_n$ is a composition of transpositions, it defines a linear automorphism of \mathbb{R}^n equal to the composition of the linear mappings defined above.

- (1) Check that T_{ij} acts as a reflection with respect to the vector $e_i e_j \in \mathbb{R}^n$.
- (2) Check that any element σ of S_n fixes pointwise the line in \mathbb{R}^n spanned by $e_1 + e_2 + \ldots e_n$.
- (3) Let n = 3. Describe the action of each element (how many are there?) of S_3 in \mathbb{R}^3 and in the plane U orthogonal to $e_1 + e_2 + e_3$. Example 13 lists all matrices of orthogonal operators in \mathbb{R}^2 . Identify among them the matrices corresponding to the elements of S_3 acting in U. Check that the product of two reflections is a rotation.

Example 17. The action of S_n in \mathbb{R}^n described above can be composed with the reflections $\{P_i\}_{i=1}^n$, sending e_i to its negative and fixing all other elements of the basis $e_k, k \neq i$.

- (1) Check that the obtained set of orthogonal operators has no nonzero fixed points (elements $x \in \mathbb{R}^n$ such that f(x) = x for all f in the set).
- (2) How many distinct orthogonal operators can be constructed in this way for n = 2 and n = 3?
- (3) In case n = 2, identify the matrices of the obtained orthogonal operators among those listed in Example 13.

Remark 18. The two examples above correspond to the series A_{n-1} and B_n in the classification of finite reflection groups.