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PROPERTIES OF SIMPLE ROOTS 

ERIC BRODER 

Let V be a Euclidean space, that is a finite dimensional real linear space 
with a symmetric positive definite inner product �, �. 

Recall that for a root system Δ in V , A subset Π ⊂ Δ is a set of simple 
roots (a simple root system) if 

(1) Π is a basis in V ; 
(2) Each root β ∈ Δ can be written as a linear combination of elements 

of Π with integer coefficients of the same sign, i.e. 

β = mαα 
α∈Π 

with all mα ≥ 0 or all mα ≤ 0. 
The root β is positive if the coefficients are nonnegative, and negative oth
erwise. The set of all positive roots (positive root system) associated to Π 
is denoted Δ+ . 

Below we will assume that the root system Δ is reduced, that is, for any 
α ∈ Δ, 2α /∈ Δ. 

Consider a given abstract root system Δ and some simple root system 
Π ⊂ Δ. We may represent β ∈ Δ as a linear combination of elements of 
Π with integer coefficients of the same sign. By definition, we know that 
the elements of Π are linearly independent. Thus, such a representation of 
β is unique and exactly one of ±β is a positive root associated to Π. Δ+ 

is simply the set of all positive roots associated to Π, and so our choice of 
simple root system determines an associated set of positive roots uniquely. 

Now suppose instead that we are given a positive root system Δ+ ⊂ Δ. 
We can construct a vector t ∈ V such that �t, α� = 0 for all α ∈ Δ, and such 
that Δ+ = Δ+ 

t , where 

Δ+ 
t = {α ∈ Δ : �t, α� > 0}. 

We can be sure from [3] that such a vector always exists, and by Definition 4 
in [3], we can determine the set of all indecomposable elements in Δ+ . Lets t 
call this set Πt. By Theorem 9 in [3], Π = Πt, and we have now proven our 
first theorem. 

Theorem 1. In a given Δ, a set of simple roots Π ⊂ Δ and the associated 
set of positive roots Δ+ ⊂ Δ determine each other uniquely. 
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2 ERIC BRODER 

The question of existence of sets of simple roots for any abstract root 
system Δ is settled in [3]. Theorem 1 shows that once Π is chosen Δ+ is 
unique. In this paper we want to address the question of the possible choices 
for Π ⊂ Δ. We start with a couple of examples. 

Example 2. The root system Δ of the type A2 consists of the six vec
tors {ei − ej }i=j in V , the plane orthogonal to the line e1 + e2 + e3, where 
{e1, e2, e3} is an orthonormal basis in R3 . 

We can easily present the vectors of this root system in a standard or
thonormal basis of the plane. Let i = (er −et)/

√
2 and j = (2es −er −et)/

√
6 

such that r, s, t ∈ {1, 2, 3} are distinct. 
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√
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√
2i,± 2 i± 2 j}. 

By Lemmas 6 and 7 in [3] we know that any simple root system must 
be linearly independent with an obtuse angle between each pair of simple 
roots. Every subset in Δ that satisfies these conditions is a pair of vectors 
that form a 120◦ angle. We know that the sum of two vectors of length l 
separated by 120◦ is a third vector of length l that bisects the original two: 

l cos(60◦) l cos(−60◦) l = 0 
. 

l sin(60◦) + 
l sin(−60◦) 

Therefore the possibilities for the positive roots system Δ+ are any set of 
three adjacent vectors in Δ; for any Δ+, its associated simple root system 
Π ⊆ Δ+ is the set of two outer vectors. In [1] we learned that rotations 
are a type of orthogonal operator. Then any two simple root systems, and 
their associated set of positive roots, can be mapped to each other by an 
orthogonal transformation, namely a rotation of 60k degrees, k ∈ Z: 

cos(60k◦) − sin(60k◦) 
� � √

2 cos θ 
� √

2 cos(θ + 60k◦)= .sin(60k◦) cos(60k◦) 
√

2 sin θ 
√

2 sin(θ + 60k◦) 

Example 3. Consider the root system Δ of the type B2 in V = R2: it 
consists of eight vectors {±e1 ± e2,±e1,±e2}. 

Just as in 2, any simple root system in B2 must be linearly independent 
with an obtuse angle between each pair of simple roots. Every subset in Δ 
that satisfies these conditions is a pair of vectors that form a 135◦ angle. 
Consider one such subset Π ⊂ Δ and the two roots α, β ∈ Π, �α� = 1, �β� = √

2. We can easily choose an orthonormal basis {i, j} ⊂ V such that i = 
α , −i + j = β. It follows that β + α is the root, of length 1, 45◦ from 
β and 90◦ from α, and β + 2α is the root, of length 

√
2, 90◦ from β and 
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45◦ from α. Then Π = {α, β} is a simple root system with the associated 
positive root system Δ+ = {β, β + α, β + 2α, α}. To generalize in B2, a 
positive root system Δ+ is a set of four adjacent roots, which are associated 
to the set of two outer roots, the associated simple root system Π. It is easy 
to see that, as in 2, a rotation is a type of orthogonal transformation that 
maps Δ+ ,Π ⊆ Δ+ to other positive and simple root systems. In this case, 
rotations of 90k degrees, k ∈ Z will yield 4 distinct simple and positive root 
systems. The 4 reflections sγ , γ ∈ Δ+ will return the other 4 possible simple 
and positive root systems. This is one example of how a reflection operating 
on Δ+ returns a positive root system distinct from those achieved through 
rotation: 

sα({β, α}) = {i + j,−i} , sα({β, β + α, β + 2α, α}) = {i + j, j,−i + j,−i}. 
The remaining three can be just as easily verified, especially with a well
chosen orthonormal basis. Like rotations, reflections are a type of orthogonal 
transformation (from [1]). 

Let us start working towards a result generalizing our observations. Recall 
the definition of a reflection associated to an element α ∈ V (from [1]): 

sα(x) = x− 
2�x, α� 

α. 
�α, α� 

It is an orthogonal transformation of V . Let Π ⊂ Δ be a simple root system 
associated to Δ+ ⊂ Δ. Suppose there are m simple roots in Π. Consider 
the m inequalities �t, α� > 0 for all α ∈ Π, where t is in the span of Π. 
t is a variable mdimensional vector, and all α ∈ Π are known. We have 
m inequalities in m variables, a solvable linear system since Π is a basis 
in Rm, and t exists. Theorem 9 in [3] tells us that Π = Πt , Δ+ = Δ+ .t 
For any α ∈ Δ the reflection sα maps the set {βi}n of n roots in Δt 

+ 
i=1 

to the set {sα(βi)}n of n roots in Δ. From [1] we know that orthogonal i=1 
transformations preserve the inner product of two vectors. This tells us that


�sα(βi), sα(t)� = �βi, t� , i = 1, 2, . . . , n.


Once again Theorem 9 in [3] helps us recognize that sα(Δt 
+) = Δ+ .
sα (t)

Furthermore, 
δ = β + γ = sα(δ) = sα(β) + sα(γ);⇒ 

sα(sα(δ)) = sα(sα(β)) + sα(sα(γ)) = β + γ = δ. 

Hence δ is indecomposable if and only if sα(δ) is indecomposable with respect 
to sα(Δ+), and 

sα(Πt) = Πsα(t) ⊆ Δ+ = sα(Δt 
+). sα(t) 

We have now proven the following theorem. 

Theorem 4. Let Π ⊂ Δ be a set of simple roots, associated to the set of 
positive roots Δ+ . For any α ∈ Δ, the set obtained by reflection sα(Π) is a 
simple root system with the associated positive root system sα(Δ+). 
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To understand better the passage from Δ+ to sα(Δ+), we consider the 
special case when α is a simple root. Then Δ+ ∪ sα(Δ+) differs from Δ+ ∩ 
sα(Δ+) by exactly two roots: ±α. 

Theorem 5. Let Π ⊂ Δ be a simple root system, contained in a positive 
root set Δ+ . If α ∈ Π, then the reflection sα maps the set Δ+ \{α} to itself. 

Let β ∈ Δ+ \ {α} where α ∈ Π. Then β can be represented as a linear 
combination of simple roots with nonnegative integer coefficients: 

β = cαα+ cγ γ = sα(β) = β− 
2�β, α�

α = cγ γ+(cα− 
2�β, α�

)α. 
γ∈Π\{α} 

⇒
�α, α� 

γ∈Π\{α} 
�α, α� 

2�β,α�Since all cγ ≥ 0, not all zero, then the coefficient cα − must be non�α,α�
negative, and sα(β) ∈ Δ+ . By Theorem 15 in [1] we know that sα\ {α}
maps the n distinct roots in Δ to n distinct roots in Δ. Therefore sα maps 
the m distinct roots in Δ+ \ {α} to m distinct roots in Δ+ . In other 
words, sα(Δ+ \ {α}) = Δ+ \ {α}, as was to be proved. 

\ {α}

Corollary 6. Any two positive root systems in Δ can be obtained from each 
other by a composition of reflections with respect to the roots in Δ. 

The proof of this corollary follows easily from 5. Let n be the number 
of roots in Δ+ ∩ Δ− such that Δ+ 

1 , Δ
+ ⊂ Δ. We can prove the claim by 1 2 2 

induction on n. Suppose n = 0. Then Δ+ = Δ+ and so the composition 1 2 
sα(sα(x)) will suffice, where α may be any vector in the space, including any 
root of Δ. So we know the claim is true for n = 0. Now suppose n ≥ 1. Let 
Π1 be the simple root system associated to Δ+ 

1 . Then there exists a root 
α ∈ Π1 ⊆ Δ+ such that α ∈ Δ−

2 . If this were not the case, then Π1 ∩Δ−
1 2 

would be empty, which implies Π1 ⊆ Δ+ 
2 . But every root in Δ+ is a positive 1 

sum of the simple roots in Π1, which themselves are a positive sum of the 
simple roots in the simple root system Π2 associated to Δ+ 

2 . Then the m 
positive roots in Δ+ would be the same as the m positive roots in Δ+ such 1 2 

1 ∩Δ− is empty, which would contradict n ≥ 1. So there are n − 1that Δ+
2 

roots in Δ+
2 . By 5 we know that the reflection sα will map 1 \ {α}∩Δ− \ {α}

Δ+ \ {α} and we also know that sα(α) = −α. Since not both 11 \ {α} → Δ+ 

2 , sα(Δ+±α can be in Δ−
1 ) ∩Δ− has n−1 roots and we see how the reflection 2 

sα decreased n by one. If the claim is true for n − 1, then the claim must 
be true for n. So the claim is true for all n ≥ 0. 

The statements above show that although a set of simple roots is not 
unique for a given Δ, they are related to each other by a simple orthogonal 
transformation of the space V . In particular, the angles and relative lengths 
of simple roots in any two simple root systems in Δ are the same. The next 
theorem proves another useful property of simple roots. 

Theorem 7. Let Δ+ be a positive root system in Δ such that Π ⊆ Δ+ is 
its associated simple root system. Any positive root β ∈ Δ+ can be written 
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as a sum 

β = α1 + α2 + . . . + αk , 

where αi ∈ Π for all i = 1, . . . , k (repetitions are allowed). Moreover, it can 
be done so that each partial sum 

α1 + . . . + αm, 1 ≤ m ≤ k 

is also a root. 

The claim can be proved by induction. Choose a vector t that is in the 
span of Π such that �t, α� = 1 for all α ∈ Π. We know such a t exists 
by a similar argument used in the proof of 4. For any given positive root 
β ∈ Δ+ we can choose a simple root in Π such that its inner product with 
β is positive, and call it αr , where r is the value of �t, β�. We know such a 
simple root exists because otherwise Lemma 7 in [3] tells us that Π ∪ {β}
would be linearly independent, which it clearly is not. Since all β ∈ Δ+ are 
equal to a linear combination of simple roots with nonnegative coefficients, 
it must be true that �t, β� is the sum of those coefficients and r ≥ 1. 

By induction on r we can prove the claim is true for all positive roots 
β ∈ Δ+ . Suppose r = 1. Then β = αr is a simple root and the claim is 
obviously true. Now suppose r ≥ 2. By Theorem 10 in [2], β − αr is a root 
or 0. It must be a root since 0 = �t, β−αr � = r− 1 ≥ 1. We also know that 

β = cαr αr + cαα , β − αr = (cαr − 1)αr + cαα 
α∈Π\{αr } α∈Π\{αr } 

where all cα are nonnegative and not all zero. All cα are nonnegative and not 
all zero so both cαr − 1 and all cα=αr must be nonnegative and not all zero. 
This means that β−αr is a positive root. Because β = (β−αr ) + αr where 
αr ∈ Π, if the claim is true for r−1 then it must be true for r. And since the 
claim is true for r = 1, then it must be true for all r ≥ 1, as was to be proved. 

We have now developed the tools to move on to some interesting examples. 

Example 8. Let Δ be the root system in V = R2 such that the angle between 
the simple roots is 5

6 
π . 

This condition determines Δ completely (this is the root system of the 
type G2). Let Π = {α, β} be a simple root system in Δ. 

2�β, α� 2�α, β� 
= 4 cos2 θ = 3 

�α, α�
·
�β, β� 

Note that both multiplicands on the left hand side are integers by Definition 
2 in [2] and nonpositive by Lemma 6 in [3]. Since their product is 3 we know 
that one must be equal to −3 (assume the left one) and the other must be 
equal to −1 (assume the right one). Then �β� = 

√
3. The sketch below �α�

shows Π (all sketches not drawn exactly to scale). 
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b 
b

Notice that the 2 thick lines represent the simple root system Π while the 
thin vertical line represents the hyperplane of α. Since sγ (Δ) = Δ, for all 
γ ∈ Δ, then the set Π ∪ sα(Π) must be in Δ, and it is sketched below. 

�b " 
b" � 
� 

� 

This time the thin line represents the hyperplane of β. Just as before, we 
can expand our set of roots so this time it looks like the sketch below. 

b " 
b"T T

TT
b 

b 

In this diagram the disjoint thin line represents the hyperplane of the root 
perpendicular to α. A third and final reflection returns the full abstract root 
system G2, shown below. 

b " 
b" 
"
TT��

" ��TT
b 

b 

We know from [2] that the minimum angle between roots is 30◦, so no other 
roots are possible. This is due to the limitations put onto the angle between 
roots and their relative lengths outlined in Definition 2(3) from [2] and 
Theorem 8(3) from [2]. We may apply Theorem 7 in this case to present 
each positive root as a sum of simple roots. First, define an orthonormal 
basis {i, j} ⊂ R2 such that α = i and β = −3 i+ 

√
3 j. We may use elementary2 2 

geometry to conclude 

{α, β} = Π ⊆ Δ+ = {β, β + α, β + 2α, β + 3α, 2β + 3α, α}. 

In this way, we see that any positive root in G2 can be presented as the 
partial sum described in 7. 

Recall that two root systems Δ and Δ� are isomorphic if there exists 
an orthogonal transformation of V that maps Δ to Δ�. A root system is 
irreducible if it cannot be decomposed as a disjoint union of two root systems 
Δ = Δ� ∪Δ�� of smaller dimension, so that each element of Δ� is orthogonal 
to each element of Δ��. 
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Example 9. There are just three nonisomorphic irreducible root systems 
in V = R3, of the types A3, B3 and C3 (see Example 5 in [2], Examples 10 
and 11 in [3] for definitions). 

Any other abstract root system Δ ⊂ V must be a reducible system of the 
type Δ = Δ� ∪ Δ��, where Δ�,Δ�� are two root systems of smaller dimension 
such that all roots in Δ� are orthogonal to all roots in Δ��. Clearly, one of 
Δ�,Δ�� is 1dimensional (say Δ�) and the other is 2dimensional (say Δ��). 
The only 1dimensional abstract root system is A1, so Δ� must be of this 
type. As for Δ��, the only 2dimensional abstract root systems are A1 ⊕
A1, A2, B2, and G2. A definition of an abstract root system can be found 
in [2]. Using this definition, we can verify that there are four reducible root 
systems Δi ⊂ R3 , i = A1 ⊕ A1, A2, B2, G2, with Δi = Δi

� ∪ Δi
��. In each 

of the four cases, let Δ� be a root system of type A1 and let Δ�� be a root i i 
system of type i such that every root in Δ�� is orthogonal to every root in Δ�

i.i 
The first criterion int he definition is met in all four cases because Δ�

i and Δ��
i 

are linearly independent with dimensions 1 and 2, respectively. Therefore 
their union spans R3 . If α is a root in Δi, then α is in exactly one of Δ�

i 
or Δ��

i . If α ∈ Δi
� , then the reflection sα will map Δi

� → Δi
� , since Δ� is an i 

abstract root system, and will leave Δ�� unchanged by orthogonality. Thei 
same applies for α ∈ Δ��

i . This shows that the second criterion is satisfied. 
The third criterion refers to any two roots in Δi. If the two roots are from 
the same abstract root system, then we already know the value is an integer. 
If one root is from Δ� and the other is from Δi

��, then the value must be 0 i 
by orthogonality. Either way, the value is an integer and the third and 
final criterion is satisfied. Therefore, all of the four possibilities for Δi are 
abstract root systems. 
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