SIMPLE AND POSITIVE ROOTS

JUHA VALKAMA
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Let V be a Euclidean space, i.e. a real finite dimensional linear space with a symmetric positive definite inner product \langle,$\rangle .$

We recall that a root system in V is a finite set Δ of nonzero elements of V such that
(1) Δ spans V;
(2) for all $\alpha \in \Delta$, the reflections

$$
s_{\alpha}(\beta)=\beta-\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha
$$

map the set Δ to itself;
(3) the number $\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle}$ is an integer for any $\alpha, \beta \in \Delta$.

A root is an element of Δ.
Here are two examples of root systems in \mathbb{R}^{2} :
Example 1. The root system of the type $A_{1} \oplus A_{1}$ consists of the four vectors $\left\{ \pm e_{1}, \pm e_{2}\right\}$ where $\left\{e_{1}, e_{2}\right\}$ is an orthonormal basis in \mathbb{R}^{2}.

We note that condition (1) is satisfied because $\left\{e_{1}, e_{2}\right\}$ spans \mathbb{R}^{2}. Also, since $\left\langle \pm e_{1}, \pm e_{2}\right\rangle=0$ it follows that $s_{e_{i}}\left(e_{j}\right)=s_{-e_{i}}\left(e_{j}\right)=e_{j}$ and $s_{e_{i}}\left(-e_{j}\right)=$ $s_{-e_{i}}\left(-e_{j}\right)=-e_{j}$ for $i \neq j$. Similarily, $\left\langle e_{i}, e_{i}\right\rangle=1$ and $\left\langle e_{i},-e_{i}\right\rangle=-1$ give that $s_{e_{i}}\left(e_{i}\right)=s_{-e_{i}}\left(e_{i}\right)=-e_{i}$, and $s_{e_{i}}\left(-e_{i}\right)=s_{-e_{i}}\left(-e_{i}\right)=e_{i}$. Thus, conditions (2) and (3) are also satisfied. For a sketch of $A_{1} \oplus A_{1}$, see Figure 1 on page 6 .

Example 2. The root system of the type A_{2} consists of the six vectors $\left\{e_{i}-e_{j}\right\}_{i \neq j}$ in the plane orthogonal to the line $e_{1}+e_{2}+e_{3}$ where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is an orthonormal basis in \mathbb{R}^{3}. These roots can be rewritten in a standard orthonormal basis of the plane for a more illustrative description in \mathbb{R}^{2}.

We choose, as our standard orthonormal basis for the plane, vectors $\{i, j\}$ such that $i=e_{2}-e_{1}$ and for $d=\left(e_{3}-e_{1}\right)+\left(e_{3}-e_{2}\right), j=|i| /|d| \cdot d=$ $\left(2 e_{3}-e_{2}-e_{1}\right) / \sqrt{3}$. It is easy to verify that $\langle i, j\rangle=0$. Further, we choose as our unit length $|i|=|j|=\sqrt{2}$. Then, all the roots $\alpha \in \Delta$ can be represented as $\alpha=\cos (n \pi / 3) \cdot i+\sin (n \pi / 3) \cdot j$ for $n=0,1,2,3,4,5$. That is, all the roots lie on a unit circle and the angle between any two such roots is an integer multiple of $\pi / 3$. E.g. for $n=1$ we obtain $\alpha=\cos (\pi / 3) \cdot i+\sin (\pi / 3) \cdot j=$
$\frac{1}{2} \cdot i+\frac{\sqrt{3}}{2} \cdot j=\frac{1}{2} \cdot\left(e_{2}-e_{1}\right)+\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{3}}\left(2 e_{3}-e_{2}-e_{1}\right)=e_{3}-e_{1} \in \Delta$. Other cases can easily be verified. For a sketch of A_{2}, see Figure 2 on page 6.

Since for any $\alpha \in \Delta,-\alpha$ is also in Δ, (see [1], Thm.8(1)), the number of elements in Δ is always greater than the dimension of V. The example of type A_{2} above shows that even a subset of mutually noncollinear vectors in Δ might be too big to be linearly independent. In the present paper we would like to define a subset of Δ small enough to be a basis in V, yet large enough to contain the essential information about the geometric properties of Δ. Here is a formal definition.

Definition 3. A subset Π in Δ is a set of simple roots (a simple root system) in Δ if
(1) Π is a basis in V;
(2) Each root $\beta \in \Delta$ can be written as a linear combination of the elements of Π with integer coefficients of the same sign, i.e.

$$
\beta=\sum_{\alpha \in \Pi} m_{\alpha} \alpha
$$

with all $m_{\alpha} \geq 0$ or all $m_{\alpha} \leq 0$.
The root β is positive if the coefficients are nonnegative, and negative otherwise. The set of all positive roots (positive root system) associated to Π will be denoted Δ^{+}.

We will now construct a set Π_{t} associated to an element $t \in V$ and a root system Δ, and show that it satisfies the definition of a simple root system in Δ.

Let Δ be a root system in V, and let $t \in V$ be a vector such that $\langle t, \alpha\rangle \neq 0$ for all $\alpha \in \Delta$. Set

$$
\Delta_{t}^{+}=\{\alpha \in \Delta:\langle t, \alpha\rangle>0\}
$$

Let $\Delta_{t}^{-}=\left\{-\alpha, \alpha \in \Delta_{t}^{+}\right\}$.
Remark. It is always possible to find $t \in V$ such that $\langle t, \alpha\rangle \neq 0$ for any $\alpha \in \Delta$.

We note that Δ has a finite number of elements and thus there is only a finite number of hyperplanes H_{α} such that for any $t \in H_{\alpha},\langle t, \alpha\rangle=0$. Furthermore, since $\operatorname{dim} H_{\alpha}=\operatorname{dim} V-1$ it is clear that $\bigcup_{\alpha \in \Delta} H_{\alpha}$ cannot span V and thus we can always find $t \in V$ such that $\langle t, \alpha\rangle \neq 0$ for any $\alpha \in \Delta$.

Remark. $\Delta=\Delta_{t}^{+} \cup \Delta_{t}^{-}$.
We know that $\langle t, \alpha\rangle \neq 0$ for any $\alpha \in \Delta$. Also, for $\alpha \in \Delta$ necessarily $-\alpha \in \Delta$. Since, $\langle t,-\alpha\rangle=-\langle t, \alpha\rangle$ it must be that either $\langle t, \alpha\rangle>0$ or $\langle t,-\alpha\rangle>0$, and $\alpha \in \Delta_{t}^{+}$or $\alpha \in \Delta_{t}^{-}$respectively. Thus, $\Delta_{t}^{+} \cup \Delta_{t}^{-}=\Delta$.
Definition 4. An element $\alpha \in \Delta_{t}^{+}$is decomposable if there exist $\beta, \gamma \in \Delta_{t}^{+}$ such that $\alpha=\beta+\gamma$. Otherwise $\alpha \in \Delta_{t}^{+}$is indecomposable.

Let $\Pi_{t} \subset \Delta_{t}^{+}$be the set of all indecomposable elements in Δ_{t}^{+}. The next three Lemmas prove the properties of Δ_{t}^{+}and Π_{t}.
Lemma 5. Any element in Δ_{t}^{+}can be written as a linear combination of elements in Π_{t} with nonnegative integer coefficients.
Proof. By contradiction. Suppose γ is an element of Δ_{t}^{+}for which the lemma is false. Since Δ_{t}^{+}is a finite set we can choose such a γ for which $\langle t, \gamma\rangle>0$ is minimal. Since $\gamma \in \Delta_{t}^{+}$but $\gamma \notin \Pi_{t}, \gamma$ must be decomposable. Hence, $\gamma=\alpha+\beta$ and $\langle t, \gamma\rangle=\langle t, \alpha+\beta\rangle=\langle t, \alpha\rangle+\langle t, \beta\rangle$. Furthermore, since $\alpha, \beta \in \Delta_{t}^{+},\langle t, \alpha\rangle>0$ and $\langle t, \beta\rangle>0$ it must be that $\langle t, \gamma\rangle>\langle t, \alpha\rangle$ and $\langle t, \gamma\rangle>\langle t, \beta\rangle$. By the minimality of $\langle t, \gamma\rangle$ this Lemma must then hold for α and β. However, then it must also hold for $\gamma=\alpha+\beta$, which is a contradiction. Thus, such a γ cannot exist and the lemma holds.

Lemma 6. If $\alpha, \beta \in \Pi_{t}, \alpha \neq \beta$, then $\langle\alpha, \beta\rangle \leq 0$.
Proof. By contradiction. Suppose that $\langle\alpha, \beta\rangle>0$. Then by Theorem $9(1)$ in [1] $\alpha-\beta \in \Delta$ or $\alpha-\beta=0$. We do not consider the latter case since then $\alpha=\beta$. However, considering $\alpha-\beta=\gamma \in \Delta$ for $\alpha, \beta \in \Pi_{t}$. Then, $\gamma \in \Delta_{t}^{+}$or $\gamma \in \Delta_{t}^{-}$. In the first case we find that $\alpha=\gamma+\beta$. However, α is indecomposable in Δ_{t}^{+}and we have a contradiction. In the latter case, since then $-\gamma \in \Delta_{t}^{+}$, we find that $\beta=-\gamma+\alpha$. However, β is also indecomposable in Δ_{t}^{+}and again we have a contradiction. Hence, the Lemma holds.

Remark. If we consider a euclidean space with a standard dot-product for $\langle\alpha, \beta\rangle=|\alpha||\beta| \cos (\phi) \leq 0$ it is clear by previous lemma that the smallest angle ϕ between the vectors satisfies $\pi / 2 \leq \phi \leq \pi$.
Lemma 7. Let A be a subset of V such that
(1) $\langle t, \alpha\rangle>0$ for all $\alpha \in A$;
(2) $\langle\alpha, \beta\rangle \leq 0$ for all $\alpha, \beta \in A$.

Then the elements of A are linearly independent.
Proof. By contradiction. Suppose that the elements of A are linearly dependent. Then for $\alpha_{i} \in A$ we can form $\sum c_{i} \alpha_{i}=0$ such that not all $c_{i}=0$. Since some $c_{i}>0$ and also some $c_{i}<0$, we split the linear combination into two sums with all positive coefficients and obtain $\sum m_{\beta} \beta-\sum n_{\gamma} \gamma=0$ with $\beta, \gamma \in A$ and all $m_{\beta}, n_{\gamma}>0$. We then denote $\lambda=\sum m_{\beta} \beta=\sum n_{\gamma} \gamma$ and consider $\langle\lambda, \lambda\rangle \geq 0$ (by definite positive property of inner product). Then also $\langle\lambda, \lambda\rangle=\left\langle\sum m_{\beta} \beta, \sum n_{\gamma} \gamma\right\rangle=\sum m_{\beta} \sum n_{\gamma}\langle\beta, \gamma\rangle$. However, since $\langle\beta, \gamma\rangle \leq 0$ by initial assumption and all $m_{\beta}, n_{\gamma}>0$ we obtain that $\langle\lambda, \lambda\rangle \leq 0$. Thus $\langle\lambda, \lambda\rangle=0$ and necessarily $\lambda=\overrightarrow{0}$. If we then consider $\langle\lambda, t\rangle=\left\langle\sum m_{\beta} \beta, t\right\rangle=$ $\sum m_{\beta}\langle\beta, t\rangle=0$ and note that by initial assumption $\langle t, \alpha\rangle>0$, it must be that all $m_{\beta}=0$. Similarily for m_{γ}. Hence, all $c_{i}=0$ and we have a contradiction. Thus, the elements in A are linearly independent.

Now we are ready to prove the existence of a simple root set in any abstract root system.

Theorem 8. For any $t \in V$ such that $\langle t, \alpha\rangle \neq 0$ for all $\alpha \in \Delta$, the set Π_{t} constructed above is a set of simple roots, and Δ_{t}^{+}the associated set of positive roots.
Proof. We know by Lemma 5 that every element in Δ_{t}^{+}can be written as a linear combination of elements in Π_{t} with non-negative coefficients. Accordingly, all elements in Δ_{t}^{-}can be written with non-positive coefficients. Since $\Delta_{t}^{+} \cup \Delta_{t}^{-}=\Delta$, condition (2) is satisfied. Furthermore, for any $\alpha, \beta \in$ Π_{t} we have $\langle\alpha, \beta\rangle \leq 0$ by Lemma 6 . Since by construction $\langle t, \alpha\rangle,\langle t, \beta\rangle>0$ we find by Lemma 7 that all elements in Π_{t} are linearly independent. Noting that every element of Δ can be written as a linear combination of elements of Π_{t} and since, by definition, Δ spans V, we conclude that Π_{t} is a linearly independent set that spans V and thus it is a basis, satisfying condition (1).

The converse statement is also true:
Theorem 9. Let Π be a set of simple roots in Δ, and suppose that $t \in V$ is such that $\langle t, \alpha\rangle>0$ for all $\alpha \in \Pi$. Then $\Pi=\Pi_{t}$, and the associated set of positive roots $\Delta^{+}=\Delta_{t}^{+}$.
Proof. Given t as above, we define Δ_{t}^{+}as before. It is easy to see that $\Delta^{+} \subset \Delta_{t}^{+}$since Δ^{+}is positive with regards to Π (i.e. any $\alpha \in \Delta^{+}$is a linear combination of elements of Π with non-negative coefficients) and Π is positive with regards to t (i.e. $\langle t, \alpha\rangle \geq 0$ for all $\alpha \in \Pi$). Also, similarily $\Delta^{-} \subset \Delta_{t}^{-}$. However, $\Delta=\Delta^{+} \cup \Delta^{-}=\Delta_{t}^{+} \cup \Delta_{t}^{-}$. Therefore, the number of elements in Δ^{+}is equal to the number of elements in Δ_{t}^{+}and they coincide. Furthermore, Π is a set of simple roots, i.e. it is a basis in V and its elements are indecomposable. Therefore, $\Pi \subset \Pi_{t}$ where Π_{t} is defined as all the indecomposable elements in Δ_{t}^{+}. However, Π_{t} is also a basis and therefore the number of elements in Π and Π_{t} coincide and thus $\Pi=\Pi_{t}$.
Example 10. Let V be the n-dimensional subspace of $\mathbb{R}^{n+1}(n \geq 1)$ orthogonal to the line $e_{1}+e_{2}+\ldots+e_{n+1}$, where $\left\{e_{i}\right\}_{i=1}^{n+1}$ is an orthonormal basis in \mathbb{R}^{n+1}. The root system Δ of the type A_{n} in V consists of all vectors $\left\{e_{i}-e_{j}\right\}_{i \neq j}$. Furthermore, $\Pi=\left\{e_{1}-e_{2}, e_{2}-e_{3}, \ldots, e_{n}-e_{n+1}\right\}$ is a set of simple roots, and $\Delta^{+}=\left\{e_{i}-e_{j}\right\}_{i<j}-$ the associated set of positive roots in Δ.

In order to show that all elements in Δ^{+}can be represented by elements of Π with non-negative coefficients we consider $\left(e_{i}-e_{j}\right)_{i<j}=\left(e_{i}-e_{i+1}\right)+$ $\cdots+\left(e_{j-1}-e_{j}\right)$. Also, for any $\beta \in \Delta^{-}=\left\{e_{i}-e_{j}\right\}_{j<i}$ we can simply take the corresponding $\alpha \in \Delta^{+}$s.t. $-\alpha=-\left(e_{i}-e_{j}\right)_{i<j}=\left(e_{j}-e_{i}\right)_{i<j}=\beta$ and all the coefficients will be non-positive. Since $\left\{e_{i}-e_{j}\right\}_{i<j} \cup\left\{e_{i}-e_{j}\right\}_{j<i}=\left\{e_{i}-e_{j}\right\}_{i \neq j}$ condition (2) is satisfied.

We note that, by above, any element of Δ^{+}, and thus Δ^{-}, can be represented as a linear combination of elements of Π. Also, $\Delta=\Delta^{+} \cup \Delta^{-}$and, by definition, Δ spans V. It follows that Π spans V. We then have n vectors
that span an n-dimensional space. They must be linearly independent and form a basis. Thus, condition (1) is satisfied. For a sketch of case $n=2$, see Figure 2 on page 6.
Example 11. The root system Δ of the type C_{n} in $V=\mathbb{R}^{n}(n \geq 2)$ consists of all vectors $\left\{ \pm e_{i} \pm e_{j}\right\}_{i \neq j} \cup\left\{ \pm 2 e_{i}\right\}$, where $\left\{e_{i}\right\}_{i=1}^{n}$ is an orthonormal basis in \mathbb{R}^{n}. Furthermore, $\Pi=\left\{e_{1}-e_{2}, e_{2}-e_{3}, \ldots, e_{n-1}-e_{n}, 2 e_{n}\right\}$ is a set of simple roots, and $\Delta^{+}=\left\{e_{i} \pm e_{j}\right\}_{i<j} \cup\left\{2 e_{i}\right\}$ - the associated set of positive roots in Δ.

In order to show that all elements in Δ^{+}can be represented as a linear combination of elements of Π with non-negative coefficients we recall that $\left(e_{i}-e_{j}\right)_{i<j}=\left(e_{i}-e_{i+1}\right)+\cdots+\left(e_{j-1}-e_{j}\right)$. Also, $2 e_{j}=2\left(e_{j}-e_{j+1}\right)+$ $\cdots+2\left(e_{n-1}-e_{n}\right)+2 e_{n}$. Finally, $\left(e_{i}+e_{j}\right)_{i<j}=\left(e_{i}-e_{j}\right)_{i<j}+2 e_{j}$ using the two previous formulas. Multiplying these formulas by -1 we obtain the elements of Δ^{-}with all non-positive coefficients. Noting that $\Delta=\Delta^{+} \cup \Delta^{-}$ we see that condition (2) is satisfied. Condition (1) for simple root systems is satisfied by the same argument as in the previous example. For a sketch of C_{2}, see Figure 3 on page 6 .
Example 12. We let $V=\mathbb{R}^{2}$ and recall from [1], that for any two roots $\alpha, \beta \in \Delta, n(\alpha, \beta) \cdot n(\beta, \alpha)=4 \cos ^{2}(\phi)$, where $n(\alpha, \beta)=\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle}$, and ϕ is the angle between α and β. Using Lemma 6 we can find all the angles between simple roots in \mathbb{R}^{2} and also their relative lengths. Furthermore, in accordance with Theorem 9, we can define the set of all elements $t \in V$ such that $\Pi_{t}=\Pi$ for a given Π. This set is the dominant Weyl chamber $C(\Delta, \Pi)$.

Let us assume that the root system Δ is reduced, that is for any $\alpha \in \Delta$, $2 \alpha \notin \Delta$. We have the natural constraint that $n(\alpha, \beta) \cdot n(\beta, \alpha)=4 \cos ^{2}(\phi) \leq$ 4. Also, by Lemma 6 for any $\alpha, \beta \in \Pi,\langle\alpha, \beta\rangle=|\alpha||\beta| \cos (\phi) \leq 0$ and necessarily $90 \leq \phi \leq 180$. Then, by [1] we know that for such $\alpha, \beta, n(\alpha, \beta)=$ $\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle}=\frac{2|\beta||\alpha| \cos (\phi)}{|\alpha|^{2}}=2 \frac{|\beta|}{|\alpha|} \cos (\phi)=0,-1,-2,-3$ or -4 . By our formula, we obtain $n(\alpha, \beta) \cdot n(\beta, \alpha)=4 \cos ^{2}(\phi)=0,1,2$ or 3 , and consider the possible combinations that satisfy this relation. We exclude 4 , since in that case α and β are collinear and such a Π could not form a basis, as required. To further illustrate these relations, we can write $\frac{|\alpha|}{|\beta|}=\frac{2 \cos (\phi)}{n(\alpha, \beta)}=\frac{-\sqrt{4 \cos ^{2}(\phi)}}{n(\alpha, \beta)}$. and, $\phi=180-\cos ^{-1}\left(\frac{1}{2} \sqrt{n(\alpha, \beta) \cdot n(\beta, \alpha)}\right)$. The results are tabulated in Table 1, page 6.

Figures 1, 2 and 3 sketch the relevant rootsystems and illustrate the dominant Weyl Chambers for all the above mentioned cases. In each case a set of simple roots is denoted by thick arrows. The associated regions for Weyl Chambers are obtained from constraint $C(\Delta, \Pi)=\{t \in V:\langle t, \alpha\rangle \geq$ 0 for all $\alpha \in \Pi\}$.

References

[1] 18.06CI - Final Project \#2, Abstract root systems, MIT, 2004.

$n_{\alpha, \beta}$	$n_{\beta, \alpha}$	$4 \cos ^{2}(\phi)$	ϕ	$\frac{\|\alpha\|}{\|\beta\|}$	In type
0	0	0	90	-	$A_{1} \oplus A_{1}$
-1	-1	1	120	1	A_{2}
-1	-2	2	135	$\sqrt{2}$	C_{2}
-1	-3	3	150	$\sqrt{3}$	G_{2}

Table 1:
Possible relations between simple roots

Figure 1:
Root system: $A_{1} \oplus A_{1}$

Figure 3:
Root system: C_{2}

Figure 2:
Root system: A_{2}

Figure 4:
Root system: G_{2}

