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Let V be a Euclidean space, i.e. a real finite dimensional linear space
with a symmetric positive definite inner product 〈, 〉.

We recall that a root system in V is a finite set ∆ of nonzero elements of
V such that

(1) ∆ spans V ;
(2) for all α ∈ ∆, the reflections

sα(β) = β − 2〈β, α〉
〈α, α〉 α

map the set ∆ to itself;
(3) the number 2〈β,α〉

〈α,α〉 is an integer for any α, β ∈ ∆.

A root is an element of ∆.
Here are two examples of root systems in R2:

Example 1. The root system of the type A1⊕A1 consists of the four vectors
{±e1,±e2} where {e1, e2} is an orthonormal basis in R2.

We note that condition (1) is satisfied because {e1, e2} spans R2. Also,
since 〈±e1,±e2〉 = 0 it follows that sei(ej) = s−ei(ej) = ej and sei(−ej) =
s−ei(−ej) = −ej for i 6= j. Similarily, 〈ei, ei〉 = 1 and 〈ei,−ei〉 = −1
give that sei(ei) = s−ei(ei) = −ei, and sei(−ei) = s−ei(−ei) = ei,. Thus,
conditions (2) and (3) are also satisfied. For a sketch of A1⊕A1, see Figure 1
on page 6.

Example 2. The root system of the type A2 consists of the six vectors
{ei− ej}i 6=j in the plane orthogonal to the line e1 + e2 + e3 where {e1, e2, e3}
is an orthonormal basis in R3. These roots can be rewritten in a standard
orthonormal basis of the plane for a more illustrative description in R2.

We choose, as our standard orthonormal basis for the plane, vectors {i, j}
such that i = e2 − e1 and for d = (e3 − e1) + (e3 − e2), j = |i|/|d| · d =
(2e3 − e2 − e1) /

√
3. It is easy to verify that 〈i, j〉 = 0. Further, we choose as

our unit length |i| = |j| = √
2. Then, all the roots α ∈ ∆ can be represented

as α = cos(nπ/3)·i+sin(nπ/3)·j for n = 0, 1, 2, 3, 4, 5. That is, all the roots
lie on a unit circle and the angle between any two such roots is an integer
multiple of π/3. E.g. for n = 1 we obtain α = cos(π/3) · i + sin(π/3) · j =
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1
2 · i +

√
3

2 · j = 1
2 · (e2 − e1) +

√
3

2 · 1√
3
(2e3 − e2 − e1) = e3 − e1 ∈ ∆. Other

cases can easily be verified. For a sketch of A2, see Figure 2 on page 6.
Since for any α ∈ ∆, −α is also in ∆, (see [1], Thm.8(1)), the number

of elements in ∆ is always greater than the dimension of V . The example
of type A2 above shows that even a subset of mutually noncollinear vectors
in ∆ might be too big to be linearly independent. In the present paper we
would like to define a subset of ∆ small enough to be a basis in V , yet large
enough to contain the essential information about the geometric properties
of ∆. Here is a formal definition.

Definition 3. A subset Π in ∆ is a set of simple roots (a simple root system)
in ∆ if

(1) Π is a basis in V ;
(2) Each root β ∈ ∆ can be written as a linear combination of the ele-

ments of Π with integer coefficients of the same sign, i.e.

β =
∑

α∈Π

mαα

with all mα ≥ 0 or all mα ≤ 0.
The root β is positive if the coefficients are nonnegative, and negative oth-
erwise. The set of all positive roots (positive root system) associated to Π
will be denoted ∆+.

We will now construct a set Πt associated to an element t ∈ V and a root
system ∆, and show that it satisfies the definition of a simple root system
in ∆.

Let ∆ be a root system in V , and let t ∈ V be a vector such that 〈t, α〉 6= 0
for all α ∈ ∆. Set

∆+
t = {α ∈ ∆ : 〈t, α〉 > 0}.

Let ∆−
t = {−α, α ∈ ∆+

t }.
Remark. It is always possible to find t ∈ V such that 〈t, α〉 6= 0 for any
α ∈ ∆.

We note that ∆ has a finite number of elements and thus there is only
a finite number of hyperplanes Hα such that for any t ∈ Hα, 〈t, α〉 = 0.
Furthermore, since dimHα = dim V − 1 it is clear that

⋃
α∈∆ Hα cannot

span V and thus we can always find t ∈ V such that 〈t, α〉 6= 0 for any
α ∈ ∆.

Remark. ∆ = ∆+
t ∪∆−

t .

We know that 〈t, α〉 6= 0 for any α ∈ ∆. Also, for α ∈ ∆ necessarily
−α ∈ ∆. Since, 〈t,−α〉 = −〈t, α〉 it must be that either 〈t, α〉 > 0 or
〈t,−α〉 > 0, and α ∈ ∆+

t or α ∈ ∆−
t respectively. Thus, ∆+

t ∪∆−
t = ∆.

Definition 4. An element α ∈ ∆+
t is decomposable if there exist β, γ ∈ ∆+

t

such that α = β + γ. Otherwise α ∈ ∆+
t is indecomposable.



SIMPLE AND POSITIVE ROOTS 3

Let Πt ⊂ ∆+
t be the set of all indecomposable elements in ∆+

t .
The next three Lemmas prove the properties of ∆+

t and Πt.

Lemma 5. Any element in ∆+
t can be written as a linear combination of

elements in Πt with nonnegative integer coefficients.

Proof. By contradiction. Suppose γ is an element of ∆+
t for which the

lemma is false. Since ∆+
t is a finite set we can choose such a γ for which

〈t, γ〉 > 0 is minimal. Since γ ∈ ∆+
t but γ 6∈ Πt, γ must be decomposable.

Hence, γ = α + β and 〈t, γ〉 = 〈t, α + β〉 = 〈t, α〉 + 〈t, β〉. Furthermore,
since α, β ∈ ∆+

t , 〈t, α〉 > 0 and 〈t, β〉 > 0 it must be that 〈t, γ〉 > 〈t, α〉
and 〈t, γ〉 > 〈t, β〉. By the minimality of 〈t, γ〉 this Lemma must then hold
for α and β. However, then it must also hold for γ = α + β, which is a
contradiction. Thus, such a γ cannot exist and the lemma holds. ¤
Lemma 6. If α, β ∈ Πt, α 6= β, then 〈α, β〉 ≤ 0.

Proof. By contradiction. Suppose that 〈α, β〉 > 0. Then by Theorem 9(1)
in [1] α − β ∈ ∆ or α − β = 0. We do not consider the latter case since
then α = β. However, considering α − β = γ ∈ ∆ for α, β ∈ Πt. Then,
γ ∈ ∆+

t or γ ∈ ∆−
t . In the first case we find that α = γ + β. However, α is

indecomposable in ∆+
t and we have a contradiction. In the latter case, since

then −γ ∈ ∆+
t , we find that β = −γ+α. However, β is also indecomposable

in ∆+
t and again we have a contradiction. Hence, the Lemma holds. ¤

Remark. If we consider a euclidean space with a standard dot-product for
〈α, β〉 = |α||β|cos(φ) ≤ 0 it is clear by previous lemma that the smallest
angle φ between the vectors satisfies π/2 ≤ φ ≤ π.

Lemma 7. Let A be a subset of V such that
(1) 〈t, α〉 > 0 for all α ∈ A;
(2) 〈α, β〉 ≤ 0 for all α, β ∈ A.

Then the elements of A are linearly independent.

Proof. By contradiction. Suppose that the elements of A are linearly de-
pendent. Then for αi ∈ A we can form

∑
ciαi = 0 such that not all ci = 0.

Since some ci > 0 and also some ci < 0, we split the linear combination into
two sums with all positive coefficients and obtain

∑
mββ−∑

nγγ = 0 with
β, γ ∈ A and all mβ, nγ > 0. We then denote λ =

∑
mββ =

∑
nγγ and con-

sider 〈λ, λ〉 ≥ 0 (by definite positive property of inner product). Then also
〈λ, λ〉 = 〈∑mββ,

∑
nγγ〉 =

∑
mβ

∑
nγ〈β, γ〉. However, since 〈β, γ〉 ≤ 0

by initial assumption and all mβ, nγ > 0 we obtain that 〈λ, λ〉 ≤ 0. Thus
〈λ, λ〉 = 0 and necessarily λ = ~0. If we then consider 〈λ, t〉 = 〈∑mββ, t〉 =∑

mβ〈β, t〉 = 0 and note that by initial assumption 〈t, α〉 > 0, it must
be that all mβ = 0. Similarily for mγ . Hence, all ci = 0 and we have a
contradiction. Thus, the elements in A are linearly independent. ¤

Now we are ready to prove the existence of a simple root set in any
abstract root system.



4 JUHA VALKAMA MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Theorem 8. For any t ∈ V such that 〈t, α〉 6= 0 for all α ∈ ∆, the set
Πt constructed above is a set of simple roots, and ∆+

t the associated set of
positive roots.

Proof. We know by Lemma 5 that every element in ∆+
t can be written

as a linear combination of elements in Πt with non-negative coefficients.
Accordingly, all elements in ∆−

t can be written with non-positive coefficients.
Since ∆+

t ∪∆−
t = ∆, condition (2) is satisfied. Furthermore, for any α, β ∈

Πt we have 〈α, β〉 ≤ 0 by Lemma 6. Since by construction 〈t, α〉, 〈t, β〉 > 0
we find by Lemma 7 that all elements in Πt are linearly independent. Noting
that every element of ∆ can be written as a linear combination of elements
of Πt and since, by definition, ∆ spans V , we conclude that Πt is a linearly
independent set that spans V and thus it is a basis, satisfying condition
(1). ¤

The converse statement is also true:

Theorem 9. Let Π be a set of simple roots in ∆, and suppose that t ∈ V
is such that 〈t, α〉 > 0 for all α ∈ Π. Then Π = Πt, and the associated set
of positive roots ∆+ = ∆+

t .

Proof. Given t as above, we define ∆+
t as before. It is easy to see that

∆+ ⊂ ∆+
t since ∆+ is positive with regards to Π (i.e. any α ∈ ∆+ is a

linear combination of elements of Π with non-negative coefficients) and Π
is positive with regards to t (i.e. 〈t, α〉 ≥ 0 for all α ∈ Π). Also, similarily
∆− ⊂ ∆−

t . However, ∆ = ∆+ ∪∆− = ∆+
t ∪∆−

t . Therefore, the number of
elements in ∆+ is equal to the number of elements in ∆+

t and they coincide.
Furthermore, Π is a set of simple roots, i.e. it is a basis in V and its
elements are indecomposable. Therefore, Π ⊂ Πt where Πt is defined as
all the indecomposable elements in ∆+

t . However, Πt is also a basis and
therefore the number of elements in Π and Πt coincide and thus Π = Πt. ¤
Example 10. Let V be the n-dimensional subspace of Rn+1 (n ≥ 1) or-
thogonal to the line e1 + e2 + . . . + en+1, where {ei}n+1

i=1 is an orthonormal
basis in Rn+1. The root system ∆ of the type An in V consists of all vectors
{ei − ej}i6=j. Furthermore, Π = {e1 − e2, e2 − e3, . . . , en − en+1} is a set of
simple roots, and ∆+ = {ei − ej}i<j - the associated set of positive roots in
∆.

In order to show that all elements in ∆+ can be represented by elements
of Π with non-negative coefficients we consider (ei − ej)i<j = (ei − ei+1) +
· · ·+(ej−1−ej). Also, for any β ∈ ∆− = {ei−ej}j<i we can simply take the
corresponding α ∈ ∆+ s.t. −α = −(ei−ej)i<j = (ej−ei)i<j = β and all the
coefficients will be non-positive. Since {ei−ej}i<j∪{ei−ej}j<i = {ei−ej}i6=j

condition (2) is satisfied.
We note that, by above, any element of ∆+, and thus ∆−, can be repre-

sented as a linear combination of elements of Π. Also, ∆ = ∆+ ∪∆− and,
by definition, ∆ spans V . It follows that Π spans V . We then have n vectors
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that span an n-dimensional space. They must be linearly independent and
form a basis. Thus, condition (1) is satisfied. For a sketch of case n = 2, see
Figure 2 on page 6.

Example 11. The root system ∆ of the type Cn in V = Rn (n ≥ 2) consists
of all vectors {±ei± ej}i 6=j ∪ {±2ei}, where {ei}n

i=1 is an orthonormal basis
in Rn. Furthermore, Π = {e1 − e2, e2 − e3, . . . , en−1 − en, 2en} is a set of
simple roots, and ∆+ = {ei ± ej}i<j ∪ {2ei} - the associated set of positive
roots in ∆.

In order to show that all elements in ∆+ can be represented as a linear
combination of elements of Π with non-negative coefficients we recall that
(ei − ej)i<j = (ei − ei+1) + · · · + (ej−1 − ej). Also, 2ej = 2(ej − ej+1) +
· · · + 2(en−1 − en) + 2en. Finally, (ei + ej)i<j = (ei − ej)i<j + 2ej using
the two previous formulas. Multiplying these formulas by −1 we obtain the
elements of ∆− with all non-positive coefficients. Noting that ∆ = ∆+∪∆−
we see that condition (2) is satisfied. Condition (1) for simple root systems
is satisfied by the same argument as in the previous example. For a sketch
of C2, see Figure 3 on page 6.

Example 12. We let V = R2 and recall from [1], that for any two roots
α, β ∈ ∆, n(α, β) · n(β, α) = 4 cos2(φ), where n(α, β) = 2〈β,α〉

〈α,α〉 , and φ is
the angle between α and β. Using Lemma 6 we can find all the angles
between simple roots in R2 and also their relative lengths. Furthermore, in
accordance with Theorem 9, we can define the set of all elements t ∈ V such
that Πt = Π for a given Π. This set is the dominant Weyl chamber C(∆, Π).

Let us assume that the root system ∆ is reduced, that is for any α ∈ ∆,
2α 6∈ ∆. We have the natural constraint that n(α, β) ·n(β, α) = 4 cos2(φ) ≤
4. Also, by Lemma 6 for any α, β ∈ Π, 〈α, β〉 = |α||β|cos(φ) ≤ 0 and
necessarily 90 ≤ φ ≤ 180. Then, by [1] we know that for such α, β, n(α, β) =
2〈β,α〉
〈α,α〉 = 2|β||α|cos(φ)

|α|2 = 2 |β||α|cos(φ) = 0,−1,−2,−3 or− 4. By our formula, we
obtain n(α, β) · n(β, α) = 4 cos2(φ) = 0, 1, 2 or 3, and consider the possible
combinations that satisfy this relation. We exclude 4, since in that case α
and β are collinear and such a Π could not form a basis, as required. To

further illustrate these relations, we can write |α|
|β| = 2cos(φ)

n(α,β) = −
√

4cos2(φ)

n(α,β) .

and, φ = 180 − cos−1
(

1
2

√
n(α, β) · n(β, α)

)
. The results are tabulated in

Table 1, page 6.
Figures 1, 2 and 3 sketch the relevant rootsystems and illustrate the dom-

inant Weyl Chambers for all the above mentioned cases. In each case a
set of simple roots is denoted by thick arrows. The associated regions for
Weyl Chambers are obtained from constraint C(∆, Π) = {t ∈ V : 〈t, α〉 ≥
0 for all α ∈ Π}.
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nα,β nβ,α 4 cos2(φ) φ |α|
|β| In type

0 0 0 90 − A1 ⊕A1

−1 −1 1 120 1 A2

−1 −2 2 135
√

2 C2

−1 −3 3 150
√

3 G2

Table 1:
Possible relations between simple roots

Figure 1:
Root system: A1 ⊕A1

Figure 2:
Root system: A2

Figure 3:
Root system: C2

Figure 4:
Root system: G2


