Your PRINTED name is:

\qquad
Your recitation number or instructor is

1. Forward elimination changes $A \mathbf{x}=\mathbf{b}$ to a row reduced $R \mathbf{x}=\mathbf{d}$: the complete solution is

$$
\mathbf{x}=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+\mathbf{c}_{\mathbf{1}}\left[\begin{array}{c}
2 \\
1 \\
0
\end{array}\right]+\mathbf{c}_{\mathbf{2}}\left[\begin{array}{c}
5 \\
0 \\
1
\end{array}\right]
$$

(a) (14 points) What is the 3 by 3 reduced row echelon matrix R and what is \mathbf{d} ? Solution: First, since R is in reduced row echelon form, we must have

$$
\mathbf{d}=\left[\begin{array}{lll}
4 & 0 & 0
\end{array}\right]^{T}
$$

The other two vectors provide special solutions for R, showing that R has rank 1 : again, since it is in reduced row echelon form, the bottom two rows must be all 0 , and

$$
\text { the top row is }\left[\begin{array}{lll}
1 & -2 & -5
\end{array}\right]^{T} \text {, i.e. } R=\left[\begin{array}{rrr}
1 & -2 & -5 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text {. }
$$

(b) (10 points) If the process of elimination subtracted 3 times row 1 from row 2 and then 5 times row 1 from row 3 , what matrix connects R and \mathbf{d} to the original A and \mathbf{b} ? Use this matrix to find A and \mathbf{b}.

Solution: The matrix connecting R and \mathbf{d} to the original A and \mathbf{b} is

$$
E=E_{31} E_{21}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-5 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{|rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-5 & 0 & 1
\end{array}\right]
$$

That is, $R=E A$ and $E \mathbf{b}=\mathbf{d}$. Thus, $A=E^{-1} R$ and $\mathbf{b}=E^{-1} \mathbf{d}$, giving

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{rrr}
1 & -2 & -5 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & -5 \\
3 & -6 & -15 \\
5 & -10 & -25
\end{array}\right] \\
\mathbf{b}=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
4 \\
12 \\
20
\end{array}\right]
\end{gathered}
$$

2. Suppose A is the matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 2 & 2 \\
0 & 3 & 8 & 7 \\
0 & 0 & 4 & 2
\end{array}\right]
$$

(a) (16 points) Find all special solutions to $A x=0$ and describe in words the whole nullspace of A.
Solution: First, by row reduction

$$
\left[\begin{array}{llll}
0 & 1 & 2 & 2 \\
0 & 3 & 8 & 7 \\
0 & 0 & 4 & 2
\end{array}\right] \rightarrow\left[\begin{array}{llll}
0 & 1 & 2 & 2 \\
0 & 0 & 2 & 1 \\
0 & 0 & 4 & 2
\end{array}\right] \rightarrow\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so the special solutions are

$$
s_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], s_{2}=\left[\begin{array}{c}
0 \\
-1 \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

Thus, $N(A)$ is a plane in \mathbb{R}^{4} given by all linear combinations of the special solutions.
(b) ($\mathbf{1 0}$ points) Describe the column space of this particular matrix A. "All combinations of the four columns" is not a sufficient answer.
Solution: $C(A)$ is a plane in \mathbb{R}^{3} given by all combinations of the pivot columns, namely

$$
c_{1}\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
8 \\
4
\end{array}\right]
$$

(c) (10 points) What is the reduced row echelon form $R^{*}=\operatorname{rref}(B)$ when B is the 6 by 8 block matrix

$$
B=\left[\begin{array}{cc}
A & A \\
A & A
\end{array}\right] \text { using the same } A ?
$$

Solution: Note that B immediately reduces to

$$
B=\left[\begin{array}{cc}
A & A \\
0 & 0
\end{array}\right]
$$

We reduced A above: the row reduced echelon form of of B is thus

$$
B=\left[\begin{array}{rr}
\operatorname{rref}(A) & \operatorname{rref}(A) \\
0 & 0
\end{array}\right], \operatorname{rref}(A)=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

3. (16 points) Circle the words that correctly complete the following sentence:
(a) Suppose a 3 by 5 matrix A has rank $r=3$. Then the equation $A x=b$
(always / sometimes but not always)
has (a unique solution / many solutions / no solution).
Solution: the equation $A x=b$ always has many solutions.
(b) What is the column space of A ? Describe the nullspace of A.

Solution: The column space is a 3-dimensional space inside a 3-dimensional space, i.e. it contains all the vectors, and the nullspace has dimension $5-3=2>0$ inside \mathbb{R}^{5}.
4. Suppose that A is the matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
6 & 5 \\
2 & 4
\end{array}\right]
$$

(a) (10 points) Explain in words how knowing all solutions to $A \mathbf{x}=\mathbf{b}$ decides if a given vector \mathbf{b} is in the column space of A.

Solution: The column space of A contains all linear combinations of the columns of A, which are precisely vectors of the form $A \mathbf{x}$ for an arbitrary vector \mathbf{x}. Thus,
$A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is in the column space of A.
(b) (14 points) Is the vector $\mathbf{b}=\left[\begin{array}{c}8 \\ 28 \\ 14\end{array}\right]$ in the column space of A ?

Solution: Yes. Reducing the matrix combining A and \mathbf{b} gives

$$
\left[\begin{array}{ll|l}
2 & 1 & 8 \\
6 & 5 & 28 \\
2 & 4 & 14
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
2 & 1 & 8 \\
0 & 2 & 4 \\
0 & 3 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
2 & 1 & 8 \\
0 & 2 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

Thus, $\mathbf{x}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ is a solution to $A \mathbf{x}=\mathbf{b}$, and \mathbf{b} is in the column space of A.

MIT OpenCourseWare
http://ocw.mit.edu

18.06 Linear Algebra

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

