Summary of NHST for 18.05 Jeremy Orloff and Jonathan Bloom

z-test

- Use: Compare the data mean to an hypothesized mean.
- Data: x_1, x_2, \ldots, x_n .
- Assumptions: The data are independent normal samples: $N(x^2) = 1$

 $x_i \sim N(\mu, \sigma^2)$ where μ is unknown, but σ is known.

- H_0 : For a specified μ_0 , $\mu = \mu_0$.
- H_A :

Two-sided: $\mu \neq \mu_0$ one-sided-greater: $\mu > \mu_0$ one-sided-less: $\mu < \mu_0$

- Test statistic: $z = \frac{\overline{x} \mu_0}{\sigma/\sqrt{n}}$
- Null distribution: $f(z | H_0)$ is the pdf of $Z \sim N(0, 1)$.
- *p*-value:

Two-sided:	$p = P(Z > z H_0)$	=	2*(1-pnorm(abs(z), 0, 1))
one-sided-greater (right-sided):	$p = P(Z > z \mid H_0)$	=	1 - pnorm(z, 0, 1)
one-sided-less (left-sided):	$p = P(Z < z \mid H_0)$	=	pnorm(z, 0, 1)

• Critical values: z_{α} has *right*-tail probability α

$$P(z > z_{\alpha} \mid H_0) = \alpha \quad \Leftrightarrow \quad z_{\alpha} = \texttt{qnorm}(1 - \alpha, 0, 1)$$

• Rejection regions: let α be the significance. Right-sided rejection region: $[z_{\alpha}, \infty)$ Left-sided rejection region: $(-\infty, z_{1-\alpha}]$ Two-sided rejection region: $(-\infty, z_{1-\alpha/2}] \cup [z_{\alpha/2}, \infty)$

Alternate test statistic

- Test statistic: \overline{x}
- Null distribution: $f(\overline{x} | H_0)$ is the pdf of $\overline{X} \sim N(\mu_0, \sigma^2/n)$.
- *p*-value:

Two-sided:	$p = P(\bar{X} - \mu_0 > \bar{x} - \mu_0 H_0)$	=	2*(1-pnorm(abs($(\overline{x}-\mu_0)$, 0, σ/\sqrt{n}))
one-sided-greater:	$p = P(\bar{X} > \overline{x})$	=	1 - pnorm(\overline{x} , μ_0 , σ/\sqrt{n})
one-sided-less:	$p = P(\bar{X} < \overline{x})$	=	pnorm(\overline{x} , μ_0 , σ/\sqrt{n})

• Critical values: x_{α} has *right*-tail probability α

$$P(X > x_{\alpha} \mid H_0) = \alpha \quad \Leftrightarrow \quad x_{\alpha} = \operatorname{qnorm}(1 - \alpha, \, \mu_0, \, \sigma/\sqrt{n}).$$

• Rejection regions: let α be the significance.

Right-sided rejection region: $[x_{\alpha}, \infty)$ Left-sided rejection region: $(-\infty, x_{1-\alpha}]$ Two-sided rejection region: $(-\infty, x_{1-\alpha/2}] \cup [x_{\alpha/2}, \infty)$

One-sample *t*-test of the mean

- Use: Compare the data mean to an hypothesized mean.
- Data: x_1, x_2, \ldots, x_n .
- Assumptions: The data are independent normal samples:

 $x_i \sim N(\mu, \sigma^2)$ where both μ and σ are unknown.

- H_0 : For a specified μ_0 , $\mu = \mu_0$
- H_A : Two-sided: $\mu \neq \mu_0$ one-sided-greater: $\mu > \mu_0$ one-sided-less: $\mu < \mu_0$
- Test statistic: $t = \frac{\overline{x} \mu_0}{s/\sqrt{n}}$,

where
$$s^2$$
 is the sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$

- Null distribution: $f(t \mid H_0)$ is the pdf of $T \sim t(n-1)$. (Student t-distribution with n-1 degrees of freedom)
- p-value:
 - Two-sided: p = P(|T| > t) = 2*(1-pt(abs(t), n-1))one-sided-greater: p = P(T > t) = 1 - pt(t, n-1)one-sided-less: p = P(T < t) = pt(t, n-1)
- Critical values: t_{α} has *right*-tail probability α

$$P(T > t_{\alpha} \mid H_0) = \alpha \quad \Leftrightarrow \quad t_{\alpha} = \mathsf{qt}(1 - \alpha, n - 1).$$

• Rejection regions: let α be the significance. Right-sided rejection region: $[t_{\alpha}, \infty)$ Left-sided rejection region: $(-\infty, t_{1-\alpha}]$ Two-sided rejection region: $(-\infty, t_{1-\alpha}] \cup [t_{\alpha/2}, \infty)$

Two-sample *t*-test for comparing means (assuming equal variance)

- Use: Compare the means from two groups.
- Data: $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_m$.
- Assumptions: Both groups of data are independent normal samples:

$$x_i \sim N(\mu_x, \sigma^2)$$

$$y_j \sim N(\mu_y, \sigma^2)$$

where both μ_x and μ_y are unknown and possibly different. The variance σ is unknown, but the same for both groups.

- $H_0: \mu_x = \mu_y$
- *H*_{*A*}:
 - Two-sided: $\mu_x \neq \mu_y$ one-sided-greater: $\mu_x > \mu_y$ one-sided-less: $\mu_x < \mu_y$

• Test statistic: $t = \frac{\overline{x} - \overline{y}}{s_P}$,

where s_x^2 and s_y^2 are the sample variances and s_P^2 is (sometimes called) the pooled sample variance:

$$s_p^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2} \left(\frac{1}{n} + \frac{1}{m}\right)$$

- Null distribution: $f(t \mid H_0)$ is the pdf of $T \sim t(n+m-2)$. (Student *t*-distribution with n + m - 2 degrees of freedom.)
- *p*-value:
 - Two-sided: p = P(|T| > t)= 2*(1-pt(abs(t), n+m-2))one-sided-greater: p = P(T > t) = 1 - pt(t, n+m-2) one-sided-less: p = P(T < t) = pt(t, n+m-2)
- Critical values: t_{α} has *right*-tail probability α

$$P(t > t_{\alpha} \mid H_0) = \alpha \quad \Leftrightarrow \quad t_{\alpha} = \mathsf{qt}(1 - \alpha, n + m - 2).$$

• Rejection regions: let α be the significance. Right-sided rejection region: $[t_{\alpha}, \infty)$ Left-sided rejection region: $(-\infty, t_{1-\alpha}]$ $(-\infty, t_{1-\alpha/2}] \cup [t_{\alpha/2}, \infty)$ Two-sided rejection region:

Notes: 1. There is a form of the *t*-test for when the variances are not assumed equal. It is sometimes called Welch's t-test.

2. When the data naturally comes in pairs (x_i, y_i) , one uses the paired two-sample t-test. For example, in comparing two treatments, each patient receiving treatment 1 might be paired with a patient receiving treatment 2 who is similar in terms of stage of disease, age, sex, etc.

χ^2 test for variance

- Use: Compare the data variance to an hypothesized variance.
- Data: x_1, x_2, \ldots, x_n .
- Assumptions: The data are independent normal samples:

 $x_i \sim N(\mu, \sigma^2)$ where both μ and σ are unknown.

- H_0 : For a specified σ_0 , $\sigma = \sigma_0$
- H_A :

Two-sided: $\sigma \neq \sigma_0$ one-sided-greater: $\sigma > \sigma_0$ one-sided-less: $\sigma < \sigma_0$

- Test statistic: $X^2 = \frac{(n-1)s^2}{\sigma_0^2}$, where s^2 is the sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{x})^2$
- Null distribution: $f(X^2 | H_0)$ is the pdf of $\chi^2 \sim \chi^2(n-1)$. (Chi-square distribution with n-1 degrees of freedom)

• *p*-value:

Because the χ^2 distribution is not symmetric around zero the two-sided test is a little awkward to write down. The idea is to look at the X^2 statistic and see if it's in the left or right tail of the distribution. The *p*-value is twice the probability in that tail. An easy check for which tail it's in is: $s^2/\sigma_0^2 > 1$ (right tail) or $s^2/\sigma_0^2 < 1$ (left tail).

Two-sided:
$$p = \begin{cases} 2 * P(\chi^2 > X^2) & \text{if } X^2 \text{ is in the right tail} \\ 2 * P(\chi^2 < X^2) & \text{if } X^2 \text{ is in the left tail} \\ = 2*\min(\text{pchisq}(X^2, n-1), 1-\text{pchisq}(X^2, n-1)) \end{cases}$$
one-sided-greater:
$$p = P(\chi^2 > X^2) = 1 - \text{pchisq}(X^2, n-1)$$

one-sided-less: $p = P(\chi^2 < X^2) = \text{pchisq}(X^2, \text{ n-1})$

• Critical values: x_{α} has *right*-tail probability α

$$P(\chi^2 > x_{\alpha} \mid H_0) = \alpha \iff x_{\alpha} = \operatorname{qchisq}(1 - \alpha, n - 1)$$

• Rejection regions: let α be the significance.

Right-sided rejection region:	$[x_{lpha},\infty)$
Left-sided rejection region:	$(-\infty, x_{1-\alpha}]$
Two-sided rejection region:	$(-\infty, x_{1-\alpha/2}] \cup [x_{\alpha/2}, \infty)$

χ^2 test for goodness of fit for categorical data

- Use: Test whether discrete data fits a specific finite probability mass function.
- Data: An observed count O_i in cell i of a table.
- Assumptions: None
- H_0 : The data was drawn from a specific discrete distribution.
- H_A : The data was drawn from a different distribution
- Test statistic: The data consists of observed counts O_i for each cell. From the null hypothesis probability table we get a set of expected counts E_i . There are two statistics that we can use:

Likelihood ratio statistic
$$G = 2 * \sum O_i \ln \left(\frac{O_i}{E_i}\right)$$

Pearson's chi-square statistic $X^2 = \sum \frac{(O_i - E_i)^2}{E_i}$.

It is a theorem that under the null hypothesis $X^2 \approx G$ and both are approximately chi-square. Before computers, X^2 was used because it was easier to compute. Now, it is better to use G although you will still see X^2 used quite often.

• Degrees of freedom df: The number of cell counts that can be freely specified. In the case above, of the *n* cells n - 1 can be freely specified and the last must be set to make the correct total. So we have df = n - 1 degrees of freedom.

In other chi-square tests there can be more relations between the cell counts os df might be different from n-1.

- Rule of thumb: Combine cells until the expected count in each cell is at least 5.
- Null distribution: Assuming H_0 , both statistics (approximately) follow a chi-square distribution with df degrees of freedom. That is both $f(G | H_0)$ and $f(X^2 | H_0)$ have the same pdf as $Y \sim \chi^2(df)$.
- *p*-value:
 - $egin{array}{rcl} p&=&P(Y>G)&=& 1\ \mbox{-}\ \mbox{pchisq}(G,\ \mbox{df})\ p&=&P(Y>X^2)&=& 1\ \mbox{-}\ \mbox{pchisq}(X^2,\ \mbox{df}) \end{array}$
- Critical values: c_{α} has *right*-tail probability α

$$P(Y > c_{\alpha} \mid H_0) = \alpha \iff c_{\alpha} = \operatorname{qchisq}(1 - \alpha, df).$$

• Rejection regions: let α be the significance.

We expect X^2 to be small if the fit of the data to the hypothesized distribution is good. So we only use a right-sided rejection region: $[c_{\alpha}, \infty)$.

One-way ANOVA (F-test for equal means)

- Use: Compare the data means from n groups with m data points in each group.
- Data:

• Assumptions: Data for each group is an independent normal sample drawn from distributions with (possibly) different means but the same variance:

$$\begin{array}{ll} x_{1,j} & \sim N(\mu_1,\sigma^2) \\ x_{2,j} & \sim N(\mu_2,\sigma^2) \\ & \dots \\ x_{n,j} & \sim N(\mu_n,\sigma^2) \end{array}$$

The group means μ_i are unknown and possibly different. The variance σ is unknown, but the same for all groups.

- H_0 : All the means are identical $\mu_1 = \mu_2 = \ldots = \mu_n$.
- H_A : Not all the means are the same.
- Test statistic: $w = \frac{MS_B}{MS_W}$, where

$$\begin{split} \bar{x}_i &= \text{mean of group } i \\ &= \frac{x_{i,1} + x_{i,2} + \ldots + x_{i,m}}{m} \\ \overline{x} &= \text{grand mean of all the data.} \\ s_i^2 &= \text{sample variance of group } i \\ &= \frac{1}{m-1} \sum_{j=1}^m (x_{i,j} - \bar{x}_i)^2 . \\ \text{MS}_B &= \text{between group variance} \\ &= m \times \text{sample variance of group means} \\ &= \frac{m}{n-1} \sum_{i=1}^n (\bar{x}_i - \bar{x})^2 . \\ \text{MS}_W &= \text{average within group variance} \\ &= \text{sample mean of } s_1^2, \ldots, s_n^2 \\ &= \frac{s_1^2 + s_2^2 + \ldots + s_n^2}{n} \end{split}$$

- Idea: If the μ_i are all equal, this ratio should be near 1. If they are not equal then MS_B should be larger while MS_W should remain about the same, so w should be larger. We won't give a proof of this.
- Null distribution: $f(w | H_0)$ is the pdf of $W \sim F(n-1, n(m-1))$. This is the *F*-distribution with (n-1) and n(m-1) degrees of freedom. Several *F*-distributions are plotted below.
- p-value: p = P(W > w) = 1- pf(w, n-1, n*(m-1)))

2. There is a test where the variances are not assumed equal.

3. There is a test where the groups don't all have the same number of samples.

F-test for equal variances

- Use: Compare the valances from two groups.
- Data: x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_m .
- Assumptions: Both groups of data are independent normal samples:

$$\begin{aligned} x_i &\sim N(\mu_x, \sigma_x^2) \\ y_j &\sim N(\mu_y, \sigma_y^2) \end{aligned}$$

where μ_x , μ_y , σ_x and σ_y are all unknown.

- $H_0: \sigma_x = \sigma_y$
- H_A :
 - Two-sided: $\sigma_x \neq \sigma_y$ one-sided-greater: $\sigma_x > \sigma_y$ one-sided-less: $\sigma_x < \sigma_y$
- Test statistic: $w = \frac{s_x^2}{s_y^2}$,

where s_x^2 and s_y^2 are the sample variances of the data.

- Null distribution: $f(w | H_0)$ is the pdf of $W \sim F(n-1, m-1)$. (*F*-distribution with n-1 and m-1 degrees of freedom.)
- *p*-value:

Two-sided:
$$p = 2*\min(pf(w,n-1,m-1), 1-pf(w, n-1,m-1))$$

one-sided-greater: $p = P(W > w) = 1 - pf(w, n-1, m-1)$
one-sided-less: $p = P(W < w) = pf(w, n-1, m-1)$

• Critical values: w_{α} has *right*-tail probability α

$$P(W > w_{\alpha} \mid H_0) = \alpha \quad \Leftrightarrow \quad w_{\alpha} = qf(1 - \alpha, n - 1, m - 1)$$

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.