Summary of NHST for 18.05 Jeremy Orloff and Jonathan Bloom

z-test

- Use: Compare the data mean to an hypothesized mean.
- Data: $x_{1}, x_{2}, \ldots, x_{n}$.
- Assumptions: The data are independent normal samples:

$$
x_{i} \sim N\left(\mu, \sigma^{2}\right) \text { where } \mu \text { is unknown, but } \sigma \text { is known. }
$$

- H_{0} : For a specified $\mu_{0}, \mu=\mu_{0}$.
- H_{A} :

Two-sided: $\quad \mu \neq \mu_{0}$ one-sided-greater: $\mu>\mu_{0}$ one-sided-less: $\quad \mu<\mu_{0}$

- Test statistic: $z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}$
- Null distribution: $f\left(z \mid H_{0}\right)$ is the pdf of $Z \sim N(0,1)$.
- p-value:

$$
\begin{array}{llll}
\text { Two-sided: } & p=P\left(|Z|>z \mid H_{0}\right)=2 *(1-\operatorname{pnorm}(\operatorname{abs}(z), 0,1)) \\
\text { one-sided-greater (right-sided): } & p=P\left(Z>z \mid H_{0}\right)=1-\operatorname{pnorm}(z, 0,1) \\
\text { one-sided-less (left-sided): } & p=P\left(Z<z \mid H_{0}\right)=\operatorname{pnorm}(z, 0,1)
\end{array}
$$

- Critical values: z_{α} has right-tail probability α

$$
P\left(z>z_{\alpha} \mid H_{0}\right)=\alpha \Leftrightarrow z_{\alpha}=\operatorname{qnorm}(1-\alpha, 0,1)
$$

- Rejection regions: let α be the significance.

Right-sided rejection region: $\left[z_{\alpha}, \infty\right)$
Left-sided rejection region: $\quad\left(-\infty, z_{1-\alpha}\right]$
Two-sided rejection region: $\quad\left(-\infty, z_{1-\alpha / 2}\right] \cup\left[z_{\alpha / 2}, \infty\right)$
Alternate test statistic

- Test statistic: \bar{x}
- Null distribution: $f\left(\bar{x} \mid H_{0}\right)$ is the pdf of $\bar{X} \sim \mathrm{~N}\left(\mu_{0}, \sigma^{2} / n\right)$.
- p-value:

$$
\begin{array}{lll}
\text { Two-sided: } & p=P\left(\left|\bar{X}-\mu_{0}\right|>\left|\bar{x}-\mu_{0}\right| \mid H_{0}\right) & =2 *\left(1-\operatorname{pnorm}\left(\operatorname{abs}\left(\left(\bar{x}-\mu_{0}\right), 0, \sigma / \sqrt{n}\right)\right)\right. \\
\text { one-sided-greater: } & p=P(\bar{X}>\bar{x}) & =1-\operatorname{pnorm}\left(\bar{x}, \mu_{0}, \sigma / \sqrt{n}\right) \\
\text { one-sided-less: } & p=P(\bar{X}<\bar{x}) & =\operatorname{pnorm}\left(\bar{x}, \mu_{0}, \sigma / \sqrt{n}\right)
\end{array}
$$

- Critical values: x_{α} has right-tail probability α

$$
P\left(X>x_{\alpha} \mid H_{0}\right)=\alpha \Leftrightarrow x_{\alpha}=\operatorname{qnorm}\left(1-\alpha, \mu_{0}, \sigma / \sqrt{n}\right) .
$$

- Rejection regions: let α be the significance.

Right-sided rejection region: $\left[x_{\alpha}, \infty\right)$
Left-sided rejection region: $\quad\left(-\infty, x_{1-\alpha}\right]$
Two-sided rejection region: $\quad\left(-\infty, x_{1-\alpha / 2}\right] \cup\left[x_{\alpha / 2}, \infty\right)$

One-sample t-test of the mean

- Use: Compare the data mean to an hypothesized mean.
- Data: $x_{1}, x_{2}, \ldots, x_{n}$.
- Assumptions: The data are independent normal samples:
$x_{i} \sim N\left(\mu, \sigma^{2}\right)$ where both μ and σ are unknown.
- H_{0} : For a specified $\mu_{0}, \mu=\mu_{0}$
- H_{A} :

$$
\begin{array}{ll}
\text { Two-sided: } & \mu \neq \mu_{0} \\
\text { one-sided-greater: } & \mu>\mu_{0} \\
\text { one-sided-less: } & \mu<\mu_{0}
\end{array}
$$

- Test statistic: $t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$,
where s^{2} is the sample variance: $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
- Null distribution: $f\left(t \mid H_{0}\right)$ is the pdf of $T \sim t(n-1)$.
(Student t-distribution with $n-1$ degrees of freedom)
- p-value:

Two-sided: $\quad p=P(|T|>t)=2 *(1-\mathrm{pt}(\mathrm{abs}(\mathrm{t}), \mathrm{n}-1))$
one-sided-greater: $p=P(T>t)=1-\mathrm{pt}(\mathrm{t}, \mathrm{n}-1)$
one-sided-less: $\quad p=P(T<t) \quad=\quad \mathrm{pt}(\mathrm{t}, \mathrm{n}-1)$

- Critical values: t_{α} has right-tail probability α

$$
P\left(T>t_{\alpha} \mid H_{0}\right)=\alpha \Leftrightarrow t_{\alpha}=\operatorname{qt}(1-\alpha, n-1) .
$$

Right-sided rejection region: $\left[t_{\alpha}, \infty\right)$

- Rejection regions: let α be the significance. Left-sided rejection region: $\left(-\infty, t_{1-\alpha}\right.$] Two-sided rejection region: $\quad\left(-\infty, t_{1-\alpha / 2}\right] \cup\left[t_{\alpha / 2}, \infty\right)$

Two-sample t-test for comparing means (assuming equal variance)

- Use: Compare the means from two groups.
- Data: $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{m}$.
- Assumptions: Both groups of data are independent normal samples:

$$
\begin{aligned}
& x_{i} \sim N\left(\mu_{x}, \sigma^{2}\right) \\
& y_{j} \sim N\left(\mu_{y}, \sigma^{2}\right)
\end{aligned}
$$

where both μ_{x} and μ_{y} are unknown and possibly different. The variance σ is unknown, but the same for both groups.

- $H_{0}: \mu_{x}=\mu_{y}$
- H_{A} :

Two-sided: $\quad \mu_{x} \neq \mu_{y}$
one-sided-greater: $\mu_{x}>\mu_{y}$
one-sided-less: $\quad \mu_{x}<\mu_{y}$

- Test statistic: $t=\frac{\bar{x}-\bar{y}}{s_{P}}$,
where s_{x}^{2} and s_{y}^{2} are the sample variances and s_{P}^{2} is (sometimes called) the pooled sample variance:

$$
s_{p}^{2}=\frac{(n-1) s_{x}^{2}+(m-1) s_{y}^{2}}{n+m-2}\left(\frac{1}{n}+\frac{1}{m}\right)
$$

- Null distribution: $f\left(t \mid H_{0}\right)$ is the pdf of $T \sim t(n+m-2)$. (Student t-distribution with $n+m-2$ degrees of freedom.)
- p-value:

Two-sided: $\quad p=P(|T|>t)=2 *(1-\mathrm{pt}($ abs $(\mathrm{t}), \mathrm{n}+\mathrm{m}-2))$
one-sided-greater: $p=P(T>t)=1-\mathrm{pt}(\mathrm{t}, \mathrm{n}+\mathrm{m}-2)$
one-sided-less: $\quad p=P(T<t)=p t(\mathrm{t}, \mathrm{n}+\mathrm{m}-2)$

- Critical values: t_{α} has right-tail probability α

$$
P\left(t>t_{\alpha} \mid H_{0}\right)=\alpha \Leftrightarrow t_{\alpha}=\operatorname{qt}(1-\alpha, n+m-2) .
$$

- Rejection regions: let α be the significance.

Right-sided rejection region: $\left[t_{\alpha}, \infty\right)$
Left-sided rejection region: $\quad\left(-\infty, t_{1-\alpha}\right]$
Two-sided rejection region: $\quad\left(-\infty, t_{1-\alpha / 2}\right] \cup\left[t_{\alpha / 2}, \infty\right)$
Notes: 1. There is a form of the t-test for when the variances are not assumed equal. It is sometimes called Welch's t-test.
2. When the data naturally comes in pairs $\left(x_{i}, y_{i}\right)$, one uses the paired two-sample t-test. For example, in comparing two treatments, each patient receiving treatment 1 might be paired with a patient receiving treatment 2 who is similar in terms of stage of disease, age, sex, etc.

χ^{2} test for variance

- Use: Compare the data variance to an hypothesized variance.
- Data: $x_{1}, x_{2}, \ldots, x_{n}$.
- Assumptions: The data are independent normal samples:

$$
x_{i} \sim N\left(\mu, \sigma^{2}\right) \text { where both } \mu \text { and } \sigma \text { are unknown. }
$$

- H_{0} : For a specified $\sigma_{0}, \sigma=\sigma_{0}$
- H_{A} :

$$
\begin{array}{ll}
\text { Two-sided: } & \sigma \neq \sigma_{0} \\
\text { one-sided-greater: } & \sigma>\sigma_{0} \\
\text { one-sided-less: } & \sigma<\sigma_{0}
\end{array}
$$

- Test statistic: $X^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}$, where s^{2} is the sample variance: $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
- Null distribution: $f\left(X^{2} \mid H_{0}\right)$ is the pdf of $\chi^{2} \sim \chi^{2}(n-1)$.
(Chi-square distribution with $n-1$ degrees of freedom)
- p-value:

Because the χ^{2} distribution is not symmetric around zero the two-sided test is a little awkward to write down. The idea is to look at the X^{2} statistic and see if it's in the left or right tail of the distribution. The p-value is twice the probability in that tail.
An easy check for which tail it's in is: $s^{2} / \sigma_{0}^{2}>1$ (right tail) or $s^{2} / \sigma_{0}^{2}<1$ (left tail).

$$
\begin{aligned}
& \text { Two-sided: } \quad p= \begin{cases}2 * P\left(\chi^{2}>X^{2}\right) & \text { if } X^{2} \text { is in the right tail } \\
2 * P\left(\chi^{2}<X^{2}\right) & \text { if } X^{2} \text { is in the left tail }\end{cases} \\
& =2 * \min \left(\operatorname{pchisq}\left(X^{2}, \mathrm{n}-1\right), 1-\operatorname{pchisq}\left(X^{2}, \mathrm{n}-1\right)\right) \\
& \text { one-sided-greater: } \quad p=P\left(\chi^{2}>X^{2}\right)=1-\operatorname{pchisq}\left(X^{2}, \mathrm{n}-1\right) \\
& \text { one-sided-less: } \quad p=P\left(\chi^{2}<X^{2}\right)=\operatorname{pchisq}\left(X^{2}, \mathrm{n}-1\right)
\end{aligned}
$$

- Critical values: x_{α} has right-tail probability α

$$
P\left(\chi^{2}>x_{\alpha} \mid H_{0}\right)=\alpha \quad \Leftrightarrow \quad x_{\alpha}=\operatorname{qchisq}(1-\alpha, n-1) .
$$

- Rejection regions: let α be the significance.

Right-sided rejection region: $\left[x_{\alpha}, \infty\right)$
Left-sided rejection region: $\quad\left(-\infty, x_{1-\alpha}\right]$
Two-sided rejection region: $\quad\left(-\infty, x_{1-\alpha / 2}\right] \cup\left[x_{\alpha / 2}, \infty\right)$

χ^{2} test for goodness of fit for categorical data

- Use: Test whether discrete data fits a specific finite probability mass function.
- Data: An observed count O_{i} in cell i of a table.
- Assumptions: None
- H_{0} : The data was drawn from a specific discrete distribution.
- H_{A} : The data was drawn from a different distribution
- Test statistic: The data consists of observed counts O_{i} for each cell. From the null hypothesis probability table we get a set of expected counts E_{i}. There are two statistics that we can use:

$$
\begin{aligned}
\text { Likelihood ratio statistic } G & =2 * \sum O_{i} \ln \left(\frac{O_{i}}{E_{i}}\right) \\
\text { Pearson's chi-square statistic } X^{2} & =\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} .
\end{aligned}
$$

It is a theorem that under the null hypthesis $X^{2} \approx G$ and both are approximately chi-square. Before computers, X^{2} was used because it was easier to compute. Now, it is better to use G although you will still see X^{2} used quite often.

- Degrees of freedom $d f$: The number of cell counts that can be freely specified. In the case above, of the n cells $n-1$ can be freely specified and the last must be set to make the correct total. So we have $d f=n-1$ degrees of freedom.
In other chi-square tests there can be more relations between the cell counts os $d f$ might be different from $n-1$.
- Rule of thumb: Combine cells until the expected count in each cell is at least 5.
- Null distribution: Assuming H_{0}, both statistics (approximately) follow a chi-square distribution with $d f$ degrees of freedom. That is both $f\left(G \mid H_{0}\right)$ and $f\left(X^{2} \mid H_{0}\right)$ have the same pdf as $Y \sim \chi^{2}(d f)$.
- p-value:

```
p=P(Y>G)=1-pchisq(G, df)
p=P(Y> X 2 ) = 1- pchisq( }\mp@subsup{X}{}{2}\mathrm{ , df)
```

- Critical values: c_{α} has right-tail probability α

$$
P\left(Y>c_{\alpha} \mid H_{0}\right)=\alpha \Leftrightarrow c_{\alpha}=\operatorname{qchisq}(1-\alpha, d f)
$$

- Rejection regions: let α be the significance.

We expect X^{2} to be small if the fit of the data to the hypothesized distribution is good. So we only use a right-sided rejection region: $\left[c_{\alpha}, \infty\right)$.

One-way ANOVA (F-test for equal means)

- Use: Compare the data means from n groups with m data points in each group.
- Data:

$$
\begin{array}{llll}
x_{1,1}, & x_{1,2}, & \ldots, & x_{1, m} \\
x_{2,1}, & x_{2,2}, & \ldots, & x_{2, m} \\
& & \ldots & \\
x_{n, 1}, & x_{n, 2}, & \ldots, & x_{n, m}
\end{array}
$$

- Assumptions: Data for each group is an independent normal sample drawn from distributions with (possibly) different means but the same variance:

$$
\begin{aligned}
x_{1, j} & \sim N\left(\mu_{1}, \sigma^{2}\right) \\
x_{2, j} & \sim N\left(\mu_{2}, \sigma^{2}\right) \\
& \cdots \\
x_{n, j} & \sim N\left(\mu_{n}, \sigma^{2}\right)
\end{aligned}
$$

The group means μ_{i} are unknown and possibly different. The variance σ is unknown, but the same for all groups.

- H_{0} : All the means are identical $\mu_{1}=\mu_{2}=\ldots=\mu_{n}$.
- H_{A} : Not all the means are the same.
- Test statistic: $w=\frac{\mathrm{MS}_{B}}{\mathrm{MS}_{W}}$, where

$$
\begin{aligned}
\bar{x}_{i} & =\text { mean of group } i \\
& =\frac{x_{i, 1}+x_{i, 2}+\ldots+x_{i, m}}{m} \\
\bar{x} & =\text { grand mean of all the data. } \\
s_{i}^{2} & =\text { sample variance of group } i \\
& =\frac{1}{m-1} \sum_{j=1}^{m}\left(x_{i, j}-\bar{x}_{i}\right)^{2} . \\
\text { MS }_{B} & =\text { between group variance } \\
& =m \times \text { sample variance of group means } \\
& =\frac{m}{n-1} \sum_{i=1}^{n}\left(\bar{x}_{i}-\bar{x}\right)^{2} . \\
\text { MS }_{W} & =\text { average within group variance } \\
& =\text { sample mean of } s_{1}^{2}, \ldots, s_{n}^{2} \\
& =\frac{s_{1}^{2}+s_{2}^{2}+\ldots+s_{n}^{2}}{n}
\end{aligned}
$$

- Idea: If the μ_{i} are all equal, this ratio should be near 1. If they are not equal then MS_{B} should be larger while MS_{W} should remain about the same, so w should be larger. We won't give a proof of this.
- Null distribution: $f\left(w \mid H_{0}\right)$ is the pdf of $W \sim F(n-1, n(m-1))$.

This is the F-distribution with $(n-1)$ and $n(m-1)$ degrees of freedom. Several F-distributions are plotted below.

- p-value: $p=P(W>w)=1$ - $\mathrm{pf}(\mathrm{w}, \mathrm{n}-1, \mathrm{n} *(\mathrm{~m}-1)))$

Notes: 1. ANOVA tests whether all the means are the same. It does not test whether some subset of the means are the same.
2. There is a test where the variances are not assumed equal.
3. There is a test where the groups don't all have the same number of samples.

F-test for equal variances

- Use: Compare the vaiances from two groups.
- Data: $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{m}$.
- Assumptions: Both groups of data are independent normal samples:

$$
\begin{aligned}
& x_{i} \sim N\left(\mu_{x}, \sigma_{x}^{2}\right) \\
& y_{j} \sim N\left(\mu_{y}, \sigma_{y}^{2}\right)
\end{aligned}
$$

where $\mu_{x}, \mu_{y}, \sigma_{x}$ and σ_{y} are all unknown.

- $H_{0}: \sigma_{x}=\sigma_{y}$
- H_{A} :

Two-sided: $\quad \sigma_{x} \neq \sigma_{y}$ one-sided-greater: $\quad \sigma_{x}>\sigma_{y}$ one-sided-less: $\quad \sigma_{x}<\sigma_{y}$

- Test statistic: $w=\frac{s_{x}^{2}}{s_{y}^{2}}$,
where s_{x}^{2} and s_{y}^{2} are the sample variances of the data.
- Null distribution: $f\left(w \mid H_{0}\right)$ is the pdf of $W \sim F(n-1, m-1)$.
(F-distribution with $n-1$ and $m-1$ degrees of freedom.)
- p-value:

Two-sided: $\quad p \quad=2 * \min (\mathrm{pf}(\mathrm{w}, \mathrm{n}-1, \mathrm{~m}-1), 1-\mathrm{pf}(\mathrm{w}, \mathrm{n}-1, \mathrm{~m}-1))$
one-sided-greater: $\quad p=P(W>w)=1-\mathrm{pf}(\mathrm{w}, \mathrm{n}-1, \mathrm{~m}-1)$
one-sided-less: $\quad p=P(W<w)=p f(\mathrm{w}, \mathrm{n}-1, \mathrm{~m}-1)$

- Critical values: w_{α} has right-tail probability α

$$
P\left(W>w_{\alpha} \mid H_{0}\right)=\alpha \Leftrightarrow w_{\alpha}=\mathrm{qf}(1-\alpha, n-1, m-1)
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

