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Jeremy Orloff and Jonathan Bloom

1 Learning Goals

1. Understand the statement of the law of large numbers.

2. Understand the statement of the central limit theorem.

3. Be able to use the central limit theorem to approximate probabilities of averages and
sums of independent identically-distributed random variables.

2 Introduction

We all understand intuitively that the average of many measurements of the same unknown
quantity tends to give a better estimate than a single measurement. Intuitively, this is
because the random error of each measurement cancels out in the average. In these notes
we will make this intuition precise in two ways: the law of large numbers (LoLN) and the
central limit theorem (CLT).

Briefly, both the law of large numbers and central limit theorem are about many independent
samples from same distribution. The LoLN tells us two things:

1. The average of many independent samples is (with high probability) close to the mean
of the underlying distribution.

2. This density histogram of many independent samples is (with high probability) close
to the graph of the density of the underlying distribution.

To be absolutely correct mathematically we need to make these statements more precise,
but as stated they are a good way to think about the law of large numbers.

The central limit theorem says that the sum or average of many independent copies of a
random variable is approximately a normal random variable. The CLT goes on to give
precise values for the mean and standard deviation of the normal variable.

These are both remarkable facts. Perhaps just as remarkable is the fact that often in practice
n does not have to all that large. Values of n > 30 often suffice.

2.1 There is more to experimentation than mathematics

The mathematics of the LoLN says that the average of a lot of independent samples from a
random variable will almost certainly approach the mean of the variable. The mathematics
cannot tell us if the tool or experiment is producing data worth averaging. For example,
if the measuring device is defective or poorly calibrated then the average of many mea-
surements will be a highly accurate estimate of the wrong thing! This is an example of
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systematic error or sampling bias, as opposed to the random error controlled by the law of
large numbers.

3 The law of large numbers

Suppose X1, X2, . . . , Xn are independent random variables with the same underlying
distribution. In this case, we say that the Xi are independent and identically-distributed,
or i.i.d. In particular, the Xi all have the same mean µ and standard deviation σ.

Let Xn be the average of X1, . . . , Xn:

X1 +X2 +
Xn =

· · ·+Xn

n
=

1 ∑n
Xi.

n
i=1

Note that Xn is itself a random variable. The law of large numbers and central limit
theorem tell us about the value and distribution of Xn, respectively.

LoLN: As n grows, the probability that Xn is close to µ goes to 1.

CLT: As n grows, the distribution of Xn converges to the normal distribution N(µ, σ2/n).

Before giving a more formal statement of the LoLN, let’s unpack its meaning through a
concrete example (we’ll return to the CLT later on).

Example 1. Averages of Bernoulli random variables
Suppose each Xi is an independent flip of a fair coin, so Xi ∼ Bernoulli(0.5) and µ = 0.5.
Then Xn is the proportion of heads in n flips, and we expect that this proportion is close to
0.5 for large n. Randomness being what it is, this is not guaranteed; for example we could
get 1000 heads in 1000 flips, though the probability of this occurring is very small.

So our intuition translates to: with high probability the sample average Xn is close to the
mean 0.5 for large n. We’ll demonstrate by doing some calculations in R. You can find the
code used for ‘class 6 prep’ in the usual place on our site.

To start we’ll look at the probability of being within 0.1 of the mean. We can express this
probability as

P (|Xn − 0.5| < 0.1) or equivalently P (0.4 ≤ Xn ≤ 0.6)

The law of large numbers says that this probability goes to 1 as the number of flips n gets
large. Our R code produces the following values for P (0.4 ≤ Xn ≤ 0.6).

n = 10: pbinom(6, 10, 0.5) - pbinom(3, 10, 0.5) = 0.65625

n = 50: pbinom(30, 50, 0.5) - pbinom(19, 50, 0.5) = 0.8810795
n = 100: pbinom(60, 100, 0.5) - pbinom(39, 100, 0.5) = 0.9647998
n = 500: pbinom(300, 500, 0.5) - pbinom(199, 500, 0.5) = 0.9999941
n = 1000: pbinom(600, 1000, 0.5) - pbinom(399, 1000, 0.5) = 1

As predicted by the LoLN the probability goes to 1 as n grows.

We redo the computations to see the probability of being within 0.01 of the mean. Our R
code produces the following values for P (0.49 ≤ Xn ≤ 0.51).
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n = 10: pbinom(5, 10, 0.5) - pbinom(4, 10, 0.5) = 0.2460937
n = 100: pbinom(51, 100, 0.5) - pbinom(48, 100, 0.5) = 0.2356466
n = 1000: pbinom(510, 1000, 0.5) - pbinom(489, 1000, 0.5) = 0.49334
n = 10000: pbinom(5100, 10000, 0.5) - pbinom(4899, 10000, 0.5) = 0.9555742

Again we see the probability of being close to the mean going to 1 as n grows. Since 0.01
is smaller than 0.1 it takes larger values of n to raise the probability to near 1.

This convergence of the probability to 1 is the LoLN in action! Whenever you’re confused,
it will help you to keep this example in mind. So we see that the LoLN says that with high
probability the average of a large number of independent trials from the same distribution
will be very close to the underlying mean of the distribution. Now we’re ready for the
formal statement.

3.1 Formal statement of the law of large numbers

Theorem (Law of Large Numbers): Suppose X1, X2, . . . , Xn, . . . are i.i.d. random
variables with mean µ and variance σ2. For each n, let Xn be the average of the first n
variables. Then for any a > 0, we have

lim P (
n→∞

|Xn − µ| < a) = 1.

This says precisely that as n increases the probability of being within a of the mean goes
to 1. Think of a as a small tolerance of error from the true mean µ. In our example, if we

¯want the probability to be at least p = 0.99999 that the proportion of heads Xn is within
a = 0.1 of µ = 0.5, then n > N = 500 is large enough. If we decrease the tolerance a and/or
increase the probability p, then N will need to be larger.

4 Histograms

We can summarize multiple samples x1, . . . , xn of a random variable in a histogram. Here
we want to carefully construct histograms so that they resemble the area under the pdf.
We will then see how the LoLN applies to histograms.

The step-by-step instructions for constructing a density histogram are as follows.

1. Pick an interval of the real line and divide it into m intervals, with endpoints b0, b1, . . . ,
bm. Usually these are equally sized, so let’s assume this to start.

x

b0 b1 b2 b3 b4 b5 b6

Equally-sized bins

Each of the intervals is called a bin. For example, in the figure above the first bin is
[b0, b1] and the last bin is [b5, b6]. Each bin has a bin width, e.g. b1 − b0 is the first bin
width. Usually the bins all have the same width, called the bin width of the histogram.

2. Place each xi into the bin that contains its value. If xi lies on the boundary of two bins,
we’ll put it in the left bin (this is the R default, though it can be changed).
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3. To draw a frequency histogram: put a vertical bar above each bin. The height of the
bar should equal the number of xi in the bin.

4. To draw a density histogram: put a vertical bar above each bin. The area of the bar
should equal the fraction of all data points that lie in the bin.

Notes:
1. When all the bins have the same width, the frequency histogram bars have area propor-
tional to the count. So the density histogram results from simply by dividing the height of
each bar by the total area of the frequency histogram. Ignoring the vertical scale, the two
histograms look identical.

2. Caution: if the bin widths differ, the frequency and density histograms may look very
different. There is an example below. Don’t let anyone fool you by manipulating bin widths
to produce a histogram that suits their mischievous purposes!

In 18.05, we’ll stick with equally-sized bins. In general, we prefer the density histogram
since its vertical scale is the same as that of the pdf.

Examples. Here are some examples of histograms, all with the data [0.5,1,1,1.5,1.5,1.5,2,2,2,2].
The R code that drew them is in the R file ’class6-prep.r’. You can find the file in the usual
place on our site.

1. Here the frequency and density plots look the same but have different vertical scales.

Histogram of x

x

F
re

qu
en

cy

0.5 1.0 1.5 2.0

0
1

2
3

4

Histogram of x

x

D
en

si
ty

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

Bins centered at 0.5, 1, 1.5, 2, i.e. width 0.5, bounds at 0.25, 0.75, 1.25, 1.75, 2.25.

2. Here each value is on a bin boundary. Note the values are all on the bin boundaries
and are put into the left-hand bin. That is, the bins are right-closed, e.g the first bin is for
values in the right-closed interval (0, 0.5].
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Bin bounds at 0, 0.5, 1, 1.5, 2.

3. Here we show density histograms based on different bin widths. Note that the scale
keeps the total area equal to 1. The gaps are bins with zero counts.
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4. Here we use unqual bin widths, so the frequency and density histograms look different
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Don’t be fooled! These are based on the same data.

The density histogram is the better choice with unequal bin widths. In fact, R will complain
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if you try to make a frequency histogram with unequal bin widths. Compare the frequency
histogram with unequal bin widths with all the other histograms we drew for this data. It
clearly looks different. What happened is that by combining the data in bins (0.5, 1] and
(1, 1.5] into one bin (0.5, 1.5) we effectively made the height of both smaller bins greater.

The reason the density histogram is nice is discussed in the next section.

4.1 The law of large numbers and histograms

The law of large number has an important consequence for density histograms.

LoLN for histograms: With high probability the density histogram of a large number
of samples from a distribution is a good approximation of the graph of the underlying pdf
f(x).

Let’s illustrate this by generating a density histogram with bin width 0.1 from 100000 draws
from a standard normal distribution. As you can see, the density histogram very closely
tracks the graph of the standard normal pdf φ(z).
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Density histogram of 10000 draws from a standard normal distribution, with φ(z) in red.

5 The Central Limit Theorem

We now prepare for the statement of the CLT.

5.1 Standardization

Given a random variable X with mean µ and standard deviation σ, we define its standard-
ization of X as the new random variable

X
Z =

− µ
.

σ

Note that Z has mean 0 and standard deviation 1. Note also that if X has a normal
distribution, then the standardization of X is the standard normal distribution Z with
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mean 0 and variance 1. This explains the term ‘standardization’ and the notation of Z
above.

5.2 Statement of the Central Limit Theorem

Suppose X1, X2, . . . , Xn, . . . are i.i.d. random variables each having mean µ and standard
deviation σ. For each n let Sn denote the sum and let Xn be the average of X1, . . . , Xn.

n

Sn = X1 +X2 + . . .+Xn =
∑

Xi

i=1

Xn =
X1 +X2 + . . .+Xn

n
=
Sn
.

n

The properties of mean and variance show

E(Sn) = nµ, Var(Sn) = nσ2, σSn =
√
nσ

E(Xn) = µ, Var(Xn) =
σ2

n
, σXn

=
σ√ .
n

Since they are multiples of each other, Sn and Xn have the same standardization

Sn
Zn =

− nµ
σ
√
n

=
Xn − µ
σ/
√
n

Central Limit Theorem: For large n,

Xn ≈ N(µ, σ2/n), Sn ≈ N(nµ, nσ2), Zn ≈ N(0, 1).

Notes: 1. In words: Xn is approximately a normal distribution with the same mean as X
but a smaller variance.
2. Sn is approximately normal.
3. Standardized Xn and Sn are approximately standard normal.

The central limit theorem allows us to approximate a sum or average of i.i.d random vari-
ables by a normal random variable. This is extremely useful because it is usually easy to
do computations with the normal distribution.

A precise statement of the CLT is that the cdf’s of Zn converge to Φ(z):

lim FZ
n→∞ n(z) = Φ(z).

The proof of the Central Limit Theorem is more technical than we want to get in 18.05. It
is accessible to anyone with a decent calculus background.

5.3 Standard Normal Probabilities

To apply the CLT, we will want to have some normal probabilities at our fingertips. The
following probabilities appeared in Class 5. Let Z ∼ N(0, 1), a standard normal random
variable. Then with rounding we have:
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1. P (|Z| < 1) = 0.68

2. P (|Z| < 2) = 0.95; more precisely P (|Z| < 1.96) ≈ .95.

3. P (|Z| < 3) = 0.997

These numbers are easily compute in R using pnorm. However, they are well worth remem-
bering as rules of thumb. You should think of them as:

1. The probability that a normal random variable is within 1 standard deviation of its
mean is 0.68.

2. The probability that a normal random variable is within 2 standard deviations of its
mean is 0.95.

3. The probability that a normal random variable is within 3 standard deviations of its
mean is 0.997.

This is shown graphically in the following figure.

z−σ σ−2σ 2σ−3σ 3σ

Normal PDF

within 1 · σ ≈ 68%

within 2 · σ ≈ 95%

within 3 · σ ≈ 99%
68%

95%

99%

Claim: From these numbers we can derive:

1. P (Z < 1) ≈ 0.84

2. P (Z < 2) ≈ 0.977

3. P (Z < 3) ≈ 0.999

Proof: We know P (|Z| < 1) = 0.68. The remaining probability of 0.32 is in the two regions
Z > 1 and Z < −1. These regions are referred to as the right-hand tail and the left-hand
tail respectively. By symmetry each tail has area 0.16. Thus,

P (Z < 1) = P (|Z| < 1) + P (left-hand tail) = 0.84

The other two cases are handled similarly.

5.4 Applications of the CLT

Example 2. Flip a fair coin 100 times. Estimate the probability of more than 55 heads.

answer: Let Xj be the result of the jth flip, so Xj = 1 for heads and Xj = 0 for tails. The
total number of heads is

S = X1 +X2 + . . .+X100.

We know E(Xj) = 0.5 and Var(Xj) = 1/4. Since n = 100, we have

E(S) = 50, Var(S) = 25 and σS = 5.
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The central limit theorem says that the standardization of S is approximately N(0, 1). The
question asks for P (S > 55). Standardizing and using the CLT we get

50
P ( > 55) = P

(
S

S
−
5

>
55− 50

=
5

)
≈ P (Z > 1) 0.16.

Here Z is a standard normal random variable and P (Z > 1) = 1− P (Z < 1) ≈ 0.16.

Example 3. Estimate the probability of more than 220 heads in 400 flips.

answer: This is nearly identical to the previous example. Now µS = 200 and σS = 10 and
we want P (S > 220). Standardizing and using the CLT we get:

P (S > 220) = P

(
S − µS
σS

>
220− 200

2)
10

)
≈ P (Z > = .025.

Again, Z ∼ N(0, 1) and the rules of thumb show P (Z > 2) = .025.

Note: Even though 55/100 = 220/400, the probability of more than 55 heads in 100 flips
is larger than the probability of more than 220 heads in 400 flips. This is due to the LoLN
and the larger value of n in the latter case.

Example 4. Estimate the probability of between 40 and 60 heads in 100 flips.

answer: As in the first example, E(S) = 50, Var(S) = 25 and σS = 5. So

P (40 ≤ S ≤ 60) = P

(
40− 100

5
≤ S − 50

5
≤ 60− 50

Z
5

)
≈ P (−2 ≤ ≤ 2)

We can compute the right-hand side using our rule of thumb. For a more accurate answer
we use R:

pnorm(2) - pnorm(-2) = 0.954 . . .

Recall that in Section 3 we used the binomial distribution to compute an answer of 0.965. . . .
So our approximate answer using CLT is off by about 1%.

Think: Would you expect the CLT method to give a better or worse approximation of
P (200 < S < 300) with n = 500?

We encourage you to check your answer using R.

Example 5. Polling. When taking a political poll the results are often reported as a
number with a margin of error. For example 52% ± 3% favor candidate A. The rule of
thumb is that if you poll n people then the margin of error is ±1/

√
n. We will now see

exactly what this means and that it is an application of the central limit theorem.

Suppose there are 2 candidates A and B. Suppose further that the fraction of the population
who prefer A is p0. That is, if you ask a random person who they prefer then the probability
they’ll answer A is po

To run the poll a pollster selects n people at random and asks ’Do you support candidate
A or candidate B. Thus we can view the poll as a sequence of n independent Bernoulli(p0)
trials, X1, X

th
2, . . . , Xn, where Xi is 1 if the i person prefers A and 0 if they prefer B. The

fraction of people polled that prefer A is just the average X.
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We know that each Xi ∼ Bernoulli(p0) so,

E(Xi) = p0 and σXi =
√
p0(1− p0).

Therefore, the central limit theorem tells us that

X ≈ N(p0, σ/
√
n), where σ =

√
p0(1− p0).

In a normal distribution 95% of the probability is within 2 standard deviations of the mean.
This means that in 95% of polls of n people the sample mean X will be within 2σ/

√
n of

the true mean p0. The final step is to note that for any value of p0 we have σ ≤ 1/2. (It is
an easy calculus exercise to see that 1/4 is the maximum value of σ2 = p0(1 − p0).) This
means that we can conservatively say that in 95% of polls of n people the sample mean
X is within 1/

√
n of the true mean. The frequentist statistician then takes the interval

X ± 1/
√
n and calls it the 95% confidence interval for p0.

A word of caution: it is tempting and common, but wrong, to think that there is a 95%
probability the true fraction p0 is in the confidence interval. This is subtle, but the error
is the same one as thinking you have a disease if a 95% accurate test comes back positive.
It’s true that 95% of people taking the test get the correct result. It’s not necessarily true
that 95% of positive tests are correct.

5.5 Why use the CLT

Since the probabilities in the above examples can be computed exactly using the binomial
distribution, you may be wondering what is the point of finding an approximate answer
using the CLT. In fact, we were only able to compute these probabilities exactly because
the Xi were Bernoulli and so the sum S was binomial. In general, the distribution of the
S will not be familiar, so you will not be able to compute the probabilities for S exactly; it
can also happen that the exact computation is possible in theory but too computationally
intensive in practice, even for a computer. The power of the CLT is that it applies when Xi

has almost any distribution. Though we will see in the next section that some distributions
may require larger n for the approximation to be a good one).

5.6 How big does n have to be to apply the CLT?

Short answer: often, not that big.

The following sequences of pictures show the convergence of averages to a normal distribu-
tion.

First we show the standardized average of n i.i.d. uniform random variables with n =
1, 2, 4, 8, 12. The pdf of the average is in blue and the standard normal pdf is in red. By
the time n = 12 the fit between the standardized average and the true normal looks very
good.
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Next we show the standardized average of n i.i.d. exponential random variables with
n = 1, 2, 4, 8, 16, 64. Notice that this asymmetric density takes more terms to converge to
the normal density.
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Next we show the (non-standardized) average of n exponential random variables with
n = 1, 2, 4, 16, 64. Notice how this standard deviation shrinks as n grows, resulting in a
spikier (more peaked) density.
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The central limit theorem works for discrete variables also. Here is the standardized average
of n i.i.d. Bernoulli(.5) random variables with n = 1, 2, 12, 64. Notice that as n grows, the
average can take more values, which allows the discrete distribution to ’fill in’ the normal
density.
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Finally we show the (non-standardized) average of n Bernoulli(.5) random variables, with
n = 4, 12, 64. Notice how the standard deviation gets smaller resulting in a spikier (more
peaked) density.
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