Manipulating Continuous Random Variables

 Class 5, 18.05, Spring 2014

 Class 5, 18.05, Spring 2014
 Jeremy Orloff and Jonathan Bloom

1 Learning Goals

1. Be able to find the pdf and cdf of a random variable defined in terms of a random variable with known pdf and cdf.

2 Transformations of Random Variables

If $Y=a X+b$ then the properties of expectation and variance tell us that $E(Y)=a E(X)+b$ and $\operatorname{Var}(Y)=a^{2} \operatorname{Var}(X)$. But what is the distribution function of Y ? If Y is continuous, what is its pdf?

Often, when looking at transforms of discrete random variables we work with tables. For continuous random variables transforming the pdf is just change of variables (' u substitution') from calculus. Transforming the cdf makes direct use of the definition of the cdf.
Let's remind ourselves of the basics:

1. The cdf of X is $F_{X}(x)=P(X \leq x)$.
2. The pdf of X is related to F_{X} by $f_{X}(x)=F_{X}^{\prime}(x)$.

Example 1. Let $X \sim U(0,2)$, so $f_{X}(x)=1 / 2$ and $F_{X}(x)=x / 2$ on $[0,2]$. What is the range, pdf and cdf of $Y=X^{2}$?
answer: The range is easy: $[0,4]$.
To find the cdf we work systematically from the definition.

$$
F_{Y}(y)=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})=F_{X}(\sqrt{y})=\sqrt{y} / 2
$$

To find the pdf we can just differentiate the cdf

$$
f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{1}{4 \sqrt{y}}
$$

An alternative way to find the pdf directly is by change of variables. The trick here is to remember that it is $f_{X}(x) d x$ which gives probability $\left(f_{X}(x)\right.$ by itself is probability density $)$. Here is how the calculation goes in this example.

$$
\begin{array}{r}
y=x^{2} \Rightarrow d y=2 x d x \Rightarrow d x=\frac{d y}{2 \sqrt{y}} \\
f_{X}(x) d x=\frac{d x}{2}=\frac{d y}{4 \sqrt{y}}=f_{Y}(y) d y
\end{array}
$$

Therefore $f_{Y}(y)=\frac{d y}{4 \sqrt{y}}$

Example 2. Let $X \sim \exp (\lambda)$, so $f_{X}(x)=\lambda \mathrm{e}^{-\lambda x}$ on $[0, \infty]$. What is the density of $Y=X^{2}$? answer: Let's do this using the change of variables.

$$
\begin{array}{r}
y=x^{2} \Rightarrow d y=2 x d x \Rightarrow d x=\frac{d y}{2 \sqrt{y}} \\
f_{X}(x) d x=\lambda \mathrm{e}^{-\lambda x} d x=\lambda \mathrm{e}^{-\lambda \sqrt{y}} \frac{d y}{2 \sqrt{y}}=f_{Y}(y) d y
\end{array}
$$

Therefore $f_{Y}(y)=\frac{\lambda}{2 \sqrt{y}} \mathrm{e}^{-\lambda \sqrt{y}}$.
Example 3. Assume $X \sim \mathrm{~N}\left(5,3^{2}\right)$. Show that $Z=\frac{X-5}{3}$ is standard normal, i.e., $Z \sim \mathrm{~N}(0,1)$.
answer: Again using the change of variables and the formula for $f_{X}(x)$ we have

$$
\begin{gathered}
z=\frac{x-5}{3} \Rightarrow d z=\frac{d x}{3} \Rightarrow d x=3 d z \\
f_{X}(x) d x=\frac{1}{3 \sqrt{2 \pi}} \mathrm{e}^{-(x-5)^{2} /\left(2 \cdot 3^{2}\right)} d x=\frac{1}{3 \sqrt{2 \pi}} \mathrm{e}^{-z^{2} / 2} 3 d z=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-z^{2} / 2} d z=f_{Z}(z) d z
\end{gathered}
$$

Therefore $f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-z^{2} / 2}$. Since this is exactly the density for $\mathrm{N}(0,1)$ we have shown that Z is standard normal.

This example shows an important general property of normal random variables which we give in the next example.
Example 4. Assume $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$. Show that $Z=\frac{X-\mu}{\sigma}$ is standard normal, i.e., $Z \sim \mathrm{~N}(0,1)$.
answer: This is exactly the same computation as the previous example with μ replacing 5 and σ replacing 3 . We show the computation without comment.

$$
\begin{gathered}
z=\frac{x-\mu}{\sigma} \Rightarrow d z=\frac{d x}{\sigma} \Rightarrow d x=\sigma d z \\
f_{X}(x) d x=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-(x-\mu)^{2} /\left(2 \cdot \sigma^{2}\right)} d x=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-z^{2} / 2} \sigma d z=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-z^{2} / 2} d z=f_{Z}(z) d z
\end{gathered}
$$

Therefore $f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-z^{2} / 2}$. This shows Z is standard normal.

MIT OpenCourseWare
http://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

