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1 Learning Goals 

1. Be able to construct and sample from the empirical distribution of data. 

2. Be able to explain the bootstrap principle. 

3. Be able to design and run an empirical bootstrap to compute confidence intervals. 

4. Be able to design and run a parametric bootstrap to compute confidence intervals. 

2 Introduction 

The empirical bootstrap is a statistical technique popularized by Bradley Efron in 1979. 
Though remarkably simple to implement, the bootstrap would not be feasible without 
modern computing power. The key idea is to perform computations on the data itself 
to estimate the variation of statistics that are themselves computed from the same data. 
That is, the data is ‘pulling itself up by its own bootstrap.’ (A google search of ‘by ones 
own bootstraps’ will give you the etymology of this metaphor.) Such techniques existed 
before 1979, but Efron widened their applicability and demonstrated how to implement the 
bootstrap effectively using computers. He also coined the term ‘bootstrap’ 1 . 

Our main application of the bootstrap will be to estimate the variation of point estimates; 
that is, to estimate confidence intervals. An example will make our goal clear. 

Example 1. Suppose we have data 

x1, x2, . . . , xn 

If we knew the data was drawn from N(µ, σ2) with the unknown mean µ and known variance 
σ2 then we have seen that   

σ σ 
x − 1.96√ , x + 1.96√ 

n n

is a 95% confidence interval for µ. 

Now suppose the data is drawn from some completely unknown distribution. To have a 
name we’ll call this distribution F and its (unknown) mean µ. We can still use the sample 
mean x as a point estimate of µ. But how can we find a confidence interval for µ around 
x? Our answer will be to use the bootstrap! 

In fact, we’ll see that the bootstrap handles other statistics as easily as it handles the mean. 
For example: the median, other percentiles or the trimmed mean. These are statistics 
where, even for normal distributions, it can be difficult to compute a confidence interval 
from theory alone. 

1Paraphrased from Dekking et al. A Modern Introduction to Probabilty and Statistics, Springer, 2005, 
page 275. 
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3 Sampling 

In statistics to sample from a set is to choose elements from that set. In a random sample 
the elements are chosen randomly. There are two common methods for random sampling. 

Sampling without replacement 
Suppose we draw 10 cards at random from a deck of 52 cards without putting any of the 
cards back into the deck between draws. This is called sampling without replacement or 
simple random sampling. With this method of sampling our 10 card sample will have no 
duplicate cards. 

Sampling with replacement 
Now suppose we draw 10 cards at random from the deck, but after each draw we put the 
card back in the deck and shuffle the cards. This is called sampling with replacement. With 
this method, the 10 card sample might have duplicates. It’s even possible that we would 
draw the 6 of hearts all 10 times. 

Think: What’s the probability of drawing the 6 of hearts 10 times in a row? 

Example 2. We can view rolling an 8-sided die repeatedly as sampling with replacement 
from the set {1,2,3,4,5,6,7,8}. Since each number is equally likely, we say we are sampling 
uniformly from the data. There is a subtlety here: each data point is equally probable, but 
if there are repeated values within the data those values will have a higher probability of 
being chosen. The next example illustrates this. 

Note. In practice if we take a small number from a very large set then it doesn’t matter 
whether we sample with or without replacement. For example, if we randomly sample 400 
out of 300 million people in the U.S. then it is so unlikely that the same person will be 
picked twice that there is no real difference between sampling with or without replacement. 

4 The empirical distribution of data 

The empirical distribution of data is simply the distribution that you see in the data. Let’s 
illustrate this with an example. 

Example 3. Suppose we roll an 8-sided die 10 times and get the following data, written 
in increasing order: 

1, 1, 2, 3, 3, 3, 3, 4, 7, 7. 

Imagine writing these values on 10 slips of paper, putting them in a hat and drawing one 
at random. Then, for example, the probability of drawing a 3 is 4/10 and the probability 
of drawing a 4 is 1/10. The full empirical distribution can be put in a probability table 

value x 1 2 3 4 7 
p(x) 2/10 1/10 4/10 1/10 2/10 

Notation. If we label the true distribution the data is drawn from as F , then we’ll label 
the empirical distribution of the data as F ∗ . If we have enough data then the law of large 
numbers tells us that F ∗ should be a good approximation of F . 

Example 4. In the dice example just above, the true and empirical distributions are: 
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value x 1 2 3 4 5 5 7 8 
true p(x) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 
empirical p(x) 2/10 1/10 4/10 1/10 0 0 2/10 0 

The true distribution F and the empirical distribution F ∗ of the 8-sided die. 

Because F ∗ is derived strictly from data we call it the empirical distribution of the data. 
We will also call it the resampling distribution. Notice that we always know F ∗ explicitly. 
In particular the expected value of F ∗ is just the sample mean x. 

5 Resampling 

The empirical bootstrap proceeds by resampling from the data. We continue the dice 
example above. 

Example 5. Suppose we have 10 data points, given in increasing order: 

1, 1, 2, 3, 3, 3, 3, 4, 7, 7 

We view this as a sample taken from some underlying distribution. To resample is to sample 
with replacement from the empirical distribution, e.g. put these 10 numbers in a hat and 
draw one at random. Then put the number back in the hat and draw again. You draw as 
many numbers as the desired size of the resample. 

To get us a little closer to implementing this on a computer we rephrase this in the following 
way. Label the 10 data points x1, x2, . . . , x10. To resample is to draw a number j from the 
uniform distribution on {1, 2, . . . , 10} and take xj as our resampled value. In this case we 
could do so by rolling a 10-sided die. For example, if we roll a 6 then our resampled value 
is 3, the 6th element in our list. 

If we want a resampled data set of size 5, then we roll the 10-sided die 5 times and choose 
the corresponding elements from the list of data. If the 5 rolls are 

5, 3, 6, 6, 1 

then the resample is 
3, 2, 3, 3, 1. 

Notes: 1. Because we are sampling with replacement, the same data point can appear 
multiple times when we resample. 

2. Also because we are sampling with replacement, we can have a resample data set of any 
size we want, e.g. we could resample 1000 times. 

Of course, in practice one uses a software package like R to do the resampling. 

5.1 Star notation 

If we have sample data of size n 
x1, x2, . . . , xn 
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then we denote a resample of size m by adding a star to the symbols
 

∗ ∗ ∗ x1, x 2, . . . , x m 

∗Similarly, just as x is the mean of the original data, we write x for the mean of the 
resampled data. 

6 The empirical bootstrap 

Suppose we have n data points 
x1, x2, . . . , xn 

drawn from a distribution F . An empirical bootstrap sample is a resample of the same size 
n: 

∗ ∗ ∗ x1, x 2, . . . , x .n

You should think of the latter as a sample of size n drawn from the empirical distribution 
∗F ∗ . For any statistic v computed from the original sample data, we can define a statistic v 

by the same formula but computed instead using the resampled data. With this notation 
we can state the bootstrap principle. 

6.1 The bootstrap principle 

The bootstrap setup is as follows: 

1. x1, x2, . . . , xn is a data sample drawn from a distribution F . 
2. u is a statistic computed from the sample. 
3. F ∗ is the empirical distribution of the data (the resampling distribution). 

∗ ∗ ∗4. x1, x 2, . . . , x is a resample of the data of the same size as the original sample n 
∗5. u is the statistic computed from the resample. 

Then the bootstrap principle says that 

1. F ∗ ≈ F . 
∗2. The variation of u is well-approximated by the variation of u . 

∗Our real interest is in point 2: we can approximate the variation of u by that of u . We 
will exploit this to estimate the size of confidence intervals. 

6.2 Why the resample is the same size as the original sample 

This is straightforward: the variation of the statistic u will depend on the size of the sample. 
If we want to approximate this variation we need to use resamples of the same size. 

6.3 Toy example of an empirical bootstrap confidence interval 

Example 6. Toy example. We start with a made-up set of data that is small enough to 
show each step explicitly. The sample data is 

30, 37, 36, 43, 42, 43, 43, 46, 41, 42 
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Problem: Estimate the mean µ of the underlying distribution and give an 80% bootstrap 
confidence interval. 

Note: R code for this example is shown in the section ‘R annotated transcripts’ below. The 
code is also implemented in the R script class24-empiricalbootstrap.r which is posted 
with our other R code. 

answer: The sample mean is x = 40.3. We use this as an estimate of the true mean µ 
of the underlying distribution. As in Example 1, to make the confidence interval we need 
to know how much the distribution of x varies around µ. That is, we’d like to know the 
distribution of 

δ = x − µ. 

If we knew this distribution we could find δ.1 and δ.9, the 0.1 and 0.9 critical values of δ. 
Then we’d have 

P (δ.9 ≤ x − µ ≤ δ.1 | µ) = 0.8 ⇔ P (x − δ.9 ≥ µ ≥ x − δ.1 | µ) = 0.8 

which gives an 80% confidence interval of 

[x − δ.1, x − δ.9] . 

As always with confidence intervals, we hasten to point out that the probabilities computed 
above are probabilities concerning the statistic x given that the true mean is µ. 

The bootstrap principle offers a practical approach to estimating the distribution of δ = 
x − µ. It says that we can approximate it by the distribution of 

δ ∗ = x ∗ − x 

∗where x is the mean of an empirical bootstrap sample. 

Here’s the beautiful key to this: since δ∗ is computed by resampling the original data, we 
we can have a computer simulate δ∗ as many times as we’d like. Hence, by the law of large 
numbers, we can estimate the distribution of δ∗ with high precision. 

Now let’s return to the sample data with 10 points. We used R to generate 20 bootstrap 
samples, each of size 10. Each of the 20 columns in the following array is one bootstrap 
sample. 

43 36 46 30 43 43 43 37 42 42 43 37 36 42 43 43 42 43 42 43 
43 41 37 37 43 43 46 36 41 43 43 42 41 43 46 36 43 43 43 42 
42 43 37 43 46 37 36 41 36 43 41 36 37 30 46 46 42 36 36 43 
37 42 43 41 41 42 36 42 42 43 42 43 41 43 36 43 43 41 42 46 
42 36 43 43 42 37 42 42 42 46 30 43 36 43 43 42 37 36 42 30 
36 36 42 42 36 36 43 41 30 42 37 43 41 41 43 43 42 46 43 37 
43 37 41 43 41 42 43 46 46 36 43 42 43 30 41 46 43 46 30 43 
41 42 30 42 37 43 43 42 43 43 46 43 30 42 30 42 30 43 43 42 
46 42 42 43 41 42 30 37 30 42 43 42 43 37 37 37 42 43 43 46 
42 43 43 41 42 36 43 30 37 43 42 43 41 36 37 41 43 42 43 43 

Next we compute δ∗ = x ∗ − x for each bootstrap sample (i.e. each column) and sort them 
from smallest to biggest: 

-1.6, -1.4, -1.4, -0.9, -0.5, -0.2, -0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.7, 0.9, 1.1, 1.2, 1.2, 1.6, 1.6, 2.0 
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We will approximate the critical values δ and δ by δ∗ and δ∗ Since δ∗ is at the 90th .1 .9 .1 .9. .1 
percentile we choose the 18th element in the list, i.e. 1.6. Likewise, since δ.

∗ 
9 is at the 10th 

percentile we choose the 2nd element in the list, i.e. -1.4. 

Therefore our bootstrap 80% confidence interval for µ is 

[x − δ .
∗ 
1, x − δ .

∗ 
9] = [40.3 − 1.6, 40.3 + 1.4] = [38.7, 41.7] 

In this example we only generated 20 bootstrap samples so they would fit on the page. 
Using R, we would generate 10000 or more bootstrap samples in order to obtain a very 
accurate estimate of δ.

∗ 
1 and δ.

∗ 
9. 

6.4 Justification for the bootstrap principle 

The bootstrap is remarkable because resampling gives us a decent estimate on how the 
point estimate might vary. We can only give you a ‘hand-waving’ explanation of this, but 
it’s worth a try. The bootstrap is based roughly on the law of large numbers, which says, 
in short, that with enough data the empirical distribution will be a good approximation of 
the true distribution. Visually it says that the histogram of the data should approximate 
the density of the true distribution. 

First let’s note what resampling can’t do for us: it can’t improve our point estimate. For 
∗example, if we estimate the mean µ by x then in the bootstrap we would compute x for 

∗many resamples of the data. If we took the average of all the x we would expect it to be 
very close to x. This wouldn’t tell us anything new about the true value of µ. 

Even with a fair amount of data the match between the true and empirical distributions 
is not perfect, so there will be error in estimating the mean (or any other value). But 
the amount of variation in the estimates is much less sensitive to differences between the 
density and the histogram. As long as they are reasonably close both the empirical and 
true distributions will exhibit the similar amounts of variation. So, in general the bootstrap 
principle is more robust when approximating the distribution of relative variation than 
when approximating absolute distributions. 

What we have in mind is the scenario of our examples. The distribution (over different 
∗sets of experimental data) of x is ‘centered’ at µ and the distribution of x is centered at 

x If there is a significant separation between x and µ then these two distributions will also 
differ significantly. On the other hand the distribution of δ = x − µ describes the variation 
of x about its center. Likewise the distribution of δ∗ = x ∗ − x describes the variation of 
∗ x about its center. So even if the centers are quite different the two variations about the 

centers can be approximately equal. 

The figure below illustrates how the empirical distribution approximates the true distribu
tion. To make the figure we generate 100 random values from a chi-square distribution with 
3 degrees of freedom. The figure shows the pdf of the true distribution as a blue line and a 
histogram of the empirical distribuion in orange. 



7 

7 

18.05 class 24, Bootstrap confidence intervals, Spring 2014 

0 5 10 15

0.
00

0.
10

0.
20

The true and empirical distributions are approximately equal. 

Other statistics 

So far in this class we’ve avoided confidence intervals for the median and other statistics 
because their sample distributions are hard to describe theoretically. The bootstrap has no 
such problem. In fact, to handle the median all we have to do is change ‘mean’ to ‘median’ 
in the R code from Example 6. 

Example 7. Old Faithful: confidence intervals for the median 

Old Faithful is a geyser in Yellowstone National Park in Wyoming: 

http://en.wikipedia.org/wiki/Old_Faithful 

There is a publicly available data set which gives the durations of 272 consecutive eruptions. 
Here is a histogram of the data. 

Question: Estimate the median length of an eruption and give a 90% confidence interval 
for the median. 

answer: The full answer to this question is in the R file oldfaithful simple.r and the 
Old Faithful data set. Both are posted on the class R code page. (Look under ‘Other R 
code’ for the old faithful script and data.) 

http://en.wikipedia.org/wiki/Old_Faithful
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Note: the code in oldfaithful simple.r assumes that the data oldfaithful.txt is in 
the current working directory. 

Let’s walk through a summary of the steps needed to answer the question. 

1. Data: x1, . . . , x272 

2. Data median: xmedian = 240 
∗ ∗ ∗3. Find the median x of a bootstrap sample x1, . . . , x Repeat 1000 times. median 272. 

4. Compute the bootstrap differences 

∗ δ ∗ = xmedian − xmedian 

Put these 1000 values in order and pick out the .95 and .05 critical values, i.e. the 50th and 
950th biggest values. Call these δ.

∗ 
95 and δ∗ 

.05. 

5. The bootstrap principle says that we can use δ∗ and δ∗ as estimates of δ.95 and δ.05. .95 .05 
So our estimated 90% bootstrap confidence interval for the median is 

[xmedian − δ .
∗ 
05, xmedian − δ .

∗ 
95] 

The bootstrap 90% CI we found for the Old Faithful data was [235, 250]. Since we used 1000 
bootstrap samples a new simulation starting from the same sample data should produce a 
similar interval. If in Step 3 we increase the number of bootstrap samples to 10000, then the 
intervals produced by simulation would vary even less. One common strategy is to increase 
the number of bootstrap samples until the resulting simulations produce intervals that vary 
less than some acceptable level. 

Example 8. Using the Old Faithful data, estimate P (|x − µ| > 5 | µ). 
answer: We proceed exactly as in the previous example except using the mean instead of 
the median. 

1. Data: x1, . . . , x272 

2. Data mean: x = 209.27 
∗ ∗ ∗3. Find the mean x of 1000 empirical bootstrap samples: x1, . . . , x 272. 

4. Compute the bootstrap differences 

δ ∗ ∗ − x= x 

5. The bootstrap principle says that we can use the distribution of δ∗ as an approximation 
for the distribution δ = x − µ. Thus, 

P (|x − µ| > 5 | µ) = P (|δ| > 5 | µ) ≈ P (|δ ∗ | > 5) 

Our bootstrap simulation for the Old Faithful data gave 0.225 for this probability. 

Parametric bootstrap 

The examples in the previous sections all used the empirical bootstrap, which makes no as
sumptions at all about the underlying distribution and draws bootstrap samples by resam
pling the data. In this section we will look at the parametric bootstrap. The only difference 

8 
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between the parametric and empirical bootstrap is the source of the bootstrap sample. For 
the parametric bootstrap, we generate the bootstrap sample from a parametrized distribu
tion. 

Here are the elements of using the parametric bootstrap to estimate a confidence interval 
for a parameter. 

0. Data: x1, . . . , xn drawn from a distribution F (θ) with unknown parameter θ. 

1. A statistic θ̂ that estimates θ. 

2. Our bootstrap samples are drawn from F (θ̂). 

3. For each bootstrap sample 
∗ ∗ x1, . . . , x n 

we compute θ̂∗ and the bootstrap difference δ∗ = θ̂∗ − θ̂. 

4. The bootstrap principle says that the distribution of δ∗ approximates the distribution of 
ˆδ = θ − θ. 

5. Use the bootstrap differences to make a bootstrap confidence interval for θ. 

Example 9. Suppose the data x1, . . . , x300 is drawn from an exp(λ) distribution. Assume 
also that the data mean x = 2. Estimate λ and give a 95% parametric bootstrap confidence 
interval for λ. 

answer: This is implemented in the R script class24-parametricbootstrap.r which is 
posted with our other R code. 

It’s will be easiest to explain the solution using commented code. 

# Parametric bootstrap
 

# Given 300 data points with mean 2.
 
# Assume the data is exp(lambda)
 

# PROBLEM: Compute a 95% parametric bootstrap confidence interval for lambda
 

# We are given the number of data points and mean
 
n = 300
 
xbar = 2
 

# The MLE for lambda is 1/xbar
 
lambdahat = 1.0/xbar
 

# Generate the bootstrap samples
 
# Each column is one bootstrap sample (of 300 resampled values)
 
nboot = 1000
 

# Here’s the key difference with the empirical bootstrap:
 
# We draw the bootstrap sample from Exponential(lambdahat)
 
x = rexp(n*nboot, lambdahat)
 
bootstrapsample = matrix(x, nrow=n, ncol=nboot)
 

# Compute the bootstrap lambdastar
 
lambdastar = 1.0/colMeans(bootstrapsample)
 

# Compute the differences
 
deltastar = lambdastar - lambdahat
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# Find the 0.05 and 0.95 quantile for deltastar 
d = quantile(deltastar, c(0.05,0.95)) 

# Calculate the 95% confidence interval for lambda. 
ci = lambdahat - c(d[2], d[1]) 

# This line of code is just one way to format the output text. 
# sprintf is an old C function for doing this. R has many other 
# ways to do the same thing. 
s = sprintf("Confidence interval for lambda: [%.3f, %.3f]", ci[1], ci[2]) 
cat(s) 

9 The bootstrap percentile method (should not be used) 

Instead of computing the differences δ∗, the bootstrap percentile method uses the distribu
tion of the bootstrap sample statistic as a direct approximation of the data sample statistic. 

Example 10. Let’s redo Example 6 using the bootstrap percentile method. 
∗We first compute x from the bootstrap samples given in Example 6. After sorting we get 

35.7 37.4 38.0 39.5 39.7 39.8 39.8 40.1 40.1 40.6 40.7 40.8 41.1 41.1 41.7 42.0 
42.1 42.4 42.4 42.4 

∗The percentile method says to use the distribution of x as an approximation to the dis
tribution of x. The 0.9 and 0.1 critical values are given by the 2nd and 18th elements. 
Therefore the 80% confidence interval is [37.4, 42.4]. This is a bit wider than our answer 
to Example 6. 

The bootstrap percentile method is appealing due to its simplicity. However it depends on 
the bootstrap distribution of x ∗ based on a particular sample being a good approximation to 
the true distribution of x. Rice says of the percentile method, “Although this direct equation 
of quantiles of the bootstrap sampling distribution with confidence limits may seem initially 
appealing, it’s rationale is somewhat obscure.” 2 In short, don’t use the bootstrap 
percentile method. Use the empirical bootstrap instead (we have explained both in the 
hopes that you won’t confuse the empirical bootstrap for the percentile bootstrap). 

10 R annotated transcripts 

10.1 Using R to generate an empirical bootstrap confidence interval 

This code only generates 20 bootstrap samples. In real practice we would generate many 
more bootstrap samples. It is making a bootstrap confidence interval for the mean. This 
code is implemented in the R script class24-empiricalbootstrap.r which is posted with 
our other R code. 

# Data for the example 6 
x = c(30,37,36,43,42,43,43,46,41,42) 
n = length(x) 

2John Rice, Mathematical Statistics and Data Analysis, 2nd edition, p. 272. 
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# sample mean 
xbar = mean(x) 

nboot = 20 
# Generate 20 bootstrap samples, i.e. an n x 20 array of 
# random resamples from x 
tmpdata = sample(x,n*nboot, replace=TRUE) 
bootstrapsample = matrix(tmpdata, nrow=n, ncol=nboot) 

∗ # Compute the means x 
bsmeans = colMeans(bootstrapsample) 

# Compute δ∗ for each bootstrap sample 
deltastar = bsmeans - xbar
 

# Find the 0.1 and 0.9 quantile for deltastar
 
d = quantile(deltastar, c(0.1, 0.9))
 

# Calculate the 80% confidence interval for the mean.
 
ci = xbar - c(d[2], d[1])
 
cat(’Confidence interval: ’,ci, ’\n’)
 

# ALTERNATIVE: the quantile() function is sophisticated about
 
# choosing a quantile between two data points. A less sophisticated
 
# approach is to pick the quantiles by sorting deltastar and
 
# choosing the index that corresponds to the desired quantiles.
 
# We do this below.
 

# Sort the results
 
sorteddeltastar = sort(deltastar)
 

# Look at the sorted results
 
hist(sorteddeltastar, nclass=6)
 
print(sorteddeltastar)
 

# Find the .1 and .9 critical values of deltastar
 
d9alt = sorteddeltastar[2]
 
d1alt = sorteddeltastar[18]
 

# Find and print the 80% confidence interval for the mean
 
ciAlt = xbar - c(d1alt,d9alt)
 
cat(’Alternative confidence interval: ’,ciAlt, ’\n’)
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