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1 Learning Goals 

1. Be able to derive	 the formula for conservative normal confidence intervals for the 
proportion θ in Bernoulli data. 

2. Be able to compute rule-of-thumb 95% confidence intervals for the proportion θ of a 
Bernoulli distribution. 

3. Be able to compute large sample confidence intervals for the mean of a general distri
bution. 

2 Introduction 

So far, we have focused on constructing confidence intervals for data drawn from a normal 
distribution. We’ll now will switch gears and learn about confidence intervals for the mean 
when the data is not necessarily normal. 

We will first look carefully at estimating the probability θ of success when the data is drawn 
from a Bernoulli(θ) distribution –recall that θ is also the mean of the Bernoulli distribution. 

Then we will consider the case of a a large sample from an unknown distribution; in this 
case we can appeal to the central limit theorem to justify the use z-confidence intervals. 

3 Bernoulli data and polling 

One common use of confidence intervals is for estimating the proportion θ in a Bernoulli(θ) 
distribution. For example, suppose we want to use a political poll to estimate the proportion 
of the population that supports candidate A, or equivalent the probability θ that a random 
person supports candidate A. In this case we have a simple rule-of-thumb that allows us to 
quickly compute a confidence interval. 

3.1 Conservative normal confidence intervals 

Suppose we have i.i.d. data x1, x2, . . . , xn all drawn from a Bernoulli(θ) distribution. then 
a conservative normal (1 − α) confidence interval for θ is given by 

1 
x ± zα/2 · 2 

√ 
n
.	 (1) 

 
The proof given below uses the central limit theorem and the observation that σ = θ(1 − θ) ≤ 
1/2. 

1
 



 

2 18.05 class 23, Confidence Intervals for the Mean of Non-normal Data , Spring 2014 

You will also see in the derivation below that this formula is conservative, providing an ‘at 
least (1 − α)’ confidence interval. 

Example 1. A pollster asks 196 people if they prefer candidate A to candidate B and finds 
that 120 prefer A and 76 prefer B. Find the 95% conservative normal confidence interval 
for θ, the proportion of the population that prefers A. 

answer: We have x = 120/196 = 0.612, α = 0.05 and z.025 = 1.96. The formula says a 95% 
confidence interval is 

1.96 
I ≈ 0.612 ± = 0.612 ± 0.007. 

2 · 14 

3.2 Proof of Formula 1 

The proof of Formula 1 will rely on the following fact.
 

Fact. The standard deviation of a Bernoulli(θ) distribution is at most 0.5.
 

Proof of fact: Let’s denote this standard deviation by σθ to emphasize its dependence on
 
θ. The variance is then σ2 = θ(1 − θ). It’s easy to see using calculus or by graphing this θ 
parabola that the maximum occurs when θ = 1/2. Therefore the maximum variance is 1/4, 
which implies that the standard deviation σp is less the 1/4 = 1/2. 

Proof of formula (1). The proof relies on the central limit theorem which says that (for 
large n) the distribution of x is approximately normal with mean θ and standard deviation √ 
σθ/ n. For normal data we have the (1 − α) z-confidence interval 

σθ·x ± zα/2 √ 
n 

The trick now is to replace σθ by 1 : since σθ ≤ 1 the resulting interval around x2 2 

1 · √x ± zα/2 2 n 

√ 
is always at least as wide as the interval using ± σθ/ n. A wider interval is more likely to 
contain the true value of θ so we have a ‘conservative’ (1 − α) confidence interval for θ. 

1Again, we call this conservative because 
2 
√ 
n overestimates the standard deviation of x̄, 

resulting in a wider interval than is necessary to achieve a (1 − α) confidence level. 

3.3 How political polls are reported 

Political polls are often reported as a value with a margin-of-error. For example you might 
hear 

52% favor candidate A with a margin-of-error of ±5%. 

The actual precise meaning of this is 

if θ is the proportion of the population that supports A then the point 
estimate for θ is 52% and the 95% confidence interval is 52% ± 5%. 

Notice that reporters of polls in the news do not mention the 95% confidence. You just 
have to know that that’s what pollsters do. 

2 · 14
= 0.612± 0.007.

√
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The 95% rule-of-thumb confidence interval. 
Recall that the (1 − α) conservative normal confidence interval is 

1 
x ± zα/2 · √ . 

2 n 

If we use the standard approximation z.025 = 2 (instead of 1.96) we get the rule-of thumb 
95% confidence interval for θ: 

1 
x ± √ . 

n 

Example 2. Polling. Suppose there will soon be a local election between candidate A and 
candidate B. Suppose that the fraction of the voting population that supports A is θ. 

Two polling organizations ask voters who they prefer. 

1. The firm of Fast and First polls 40 random voters and finds 22 support A. 

2. The firm of Quick but Cautious polls 400 random voters and finds 190 support A. 

Find the point estimates and 95% rule-of-thumb confidence intervals for each poll. Explain 
how the statistics reflect the intuition that the poll of 400 voters is more accurate. 

answer: For poll 1 we have 
Point estimate: x = 22/40 = 0.55 

1 1 
Confidence interval: x ± √ = 0.55 ± √ = 0.55 ± 0.16 = 55% ± 16%. 

n 40 
For poll 2 we have 
Point estimate: x = 190/400 = 0.475 

1 1 
Confidence interval: x ± √ = 0.475 ± √ = 0.475 ± 0.05 = 47.5% ± 5%. 

n 400 
The greater accuracy of the poll of 400 voters is reflected in the smaller margin of error, i.e. 
5% for the poll of 400 voters vs. 16% for the poll of 40 voters. 

Other binomial proportion confidence intervals 
There are many methods of producing confidence intervals for the proportion p of a binomial(n, 
p) distribution. For a number of other common approaches, see: 

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval 

Large sample confidence intervals 

One typical goal in statistics is to estimate the mean of a distribution. When the data follows 
a normal distribution we could use confidence intervals based on standardized statistics to 
estimate the mean. 

But suppose the data x1, x2, . . . , xn is drawn from a distribution with pmf or pdf f(x) that 
may not be normal or even parametric. If the distribution has finite mean and variance 
and if n is sufficiently large, then the following version of the central limit theorem shows 
we can still use a standardized statistic. 

Central Limit Theorem: For large n, the sampling distribution of the studentized mean 
x̄− µ

is approximately standard normal: √ ≈ N(0, 1). 
s/ n 

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
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So for large n the (1 − α) confidence interval for µ is approximately 

s s · zα/2, · zα/2x̄− √ x̄+ √ 
n n 

where zα/2 is the α/2 critical value for N(0, 1). This is called the large sample confidence 
interval. 

Example 3. How large must n be? 

Recall that a type 1 CI error occurs when the confidence interval does not contain the true 
value of the parameter, in this case the mean. Let’s call the value (1 − α) the nominal 
confidence level. We say nominal because unless n is large we shouldn’t expect the true 
type 1 CI error rate to be α. 

We can run numerical simulations to approximate of the true confidence level. We expect 
that as n gets larger the true confidence level of the large sample confidence interval will 
converge to the nominal value. 

We ran such simulations for x drawn from the exponential distribution exp(1) (which is far 
from normal). For several values of n and nominal confidence level c we ran 100,000 trials. 
Each trial consisted of the following steps: 

1. draw n samples from exp(1). 

2. compute the sample mean x̄ and sample standard deviation s. 
s 

3. construct the large sample c confidence interval: x ± zα/2 · √ . 
n 

4. check for a type 1 CI error, i.e. see if the true mean µ = 1 is not in the interval. 

With 100,000 trials, the empirical confidence level should closely approximate the true level. 
For comparison we ran the same tests on data drawn from a standard normal distribution. 
Here are the results. 

Simulations for exp(1) Simulations for N(0, 1). 

For the exp(1) distribution we see that for n = 20 the simulated confidence of the large 
sample confidence interval is less than the nominal confidence 1 − α. But for n = 100 the 

nominal conf. 
n 1 − α simulated conf. 
20 0.95 0.905 
20 0.90 0.856 
20 0.80 0.762 
50 0.95 0.930 
50 0.90 0.879 
50 0.80 0.784 
100 0.95 0.938 
100 0.90 0.889 
100 0.80 0.792 
400 0.95 0.947 
400 0.90 0.897 
400 0.80 0.798 

nominal conf. 
n 1 − α simulated conf. 
20 0.95 0.936 
20 0.90 0.885 
20 0.80 0.785 
50 0.95 0.944 
50 0.90 0.894 
50 0.80 0.796 
100 0.95 0.947 
100 0.900 0.896 
100 0.800 0.797 
400 0.950 0.949 
400 0.900 0.898 
400 0.800 0.798 
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simulated confidence and nominal confidence are quite close. So for exp(1), n somewhere 
between 50 and 100 is large enough for most purposes. 

Think: For n = 20 why is the simulated confidence for the N(0, 1) distribution is smaller 
than the nominal confidence? 

This is because we used zα/2 instead of tα/2. For large n these are quite close, but for n = 20 
there is a noticable difference, e.g. z.025 = 1.96 and t.025 = 2.09. 
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