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1 Learning Goals

1. Know the definitions of the significance testing terms: NHST, null hypothesis, alternative
hypothesis, simple hypothesis, composite hypothesis, significance level, power.

2. Be able to design and run a significance test for Bernoulli or binomial data.

3. Be able to compute a p-value for a normal hypothesis and use it in a significance test.

2 Introduction

Frequentist statistics is often applied in the framework of null hypothesis significance testing
(NHST). We will look at the Neyman-Pearson paradigm which focuses on one hypothesis
called the null hypothesis. There are other paradigms for hypothesis testing, but Neyman-
Pearson is the most common. Stated simply, this method asks if the data is well outside
the region where we would expect to see it under the null hypothesis. If so, then we reject
the null hypothesis in favor of a second hypothesis called the alternative hypothesis.

The computations done here all involve the likelihood function. There are two main differ-
ences between what we’ll do here and what we did in Bayesian updating.

1. The evidence of the data will be considered purely through the likelihood function it
will not be weighted by our prior beliefs.

2. We will need a notion of extreme data, e.g. 95 out of 100 heads in a coin toss or a Mayfly
that lives for a month.

2.1 Motivating examples

Example 1. Suppose you want to decide whether a coin is fair. If you toss it 100 times
and get 85 heads, would you think the coin is likely to be unfair? What about 60 heads? Or
52 heads? Most people would guess that 85 heads is strong evidence that the coin is unfair,
whereas 52 heads is no evidence at all. Sixty heads is less clear. Null hypothesis significance
testing (NHST) is a frequentist approach to thinking quantitatively about these questions.

Example 2. Suppose you want to compare a new medical treatment to a placebo or
the current standard of care. What sort of evidence would convince you that the new
treatment is better than the placebo or the current standard? Again, NHST is a quantitative
framework for answering these questions.
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3 Significance testing

We’ll start by listing the ingredients for NHST. Formally they are pretty simple. There is
an art to choosing good ingredients. We will explore the art in examples. If you have never
seen NHST before just scan this list now and come back to it after reading through the
examples and explanations given below.

3.1 Ingredients

• H0: the null hypothesis. This is the default assumption for the model generating the
data.

• HA: the alternative hypothesis. If we reject the null hypothesis we accept this alter-
native as the best explanation for the data.

• X: the test statistic. We compute this from the data.

• Null distribution: the probability distribution of X assuming H0.

• Rejection region: if X is in the rejection region we reject H0 in favor of HA.

• Non-rejection region: the complement to the rejection region. If X is in this region
we do not reject H0. Note that we say ‘do not reject’ rather than ‘accept’ because
usually the best we can say is that the data does not support rejecting H0.

The null hypothesis H0 and the alternative hypothesis HA play different roles. Typically
we choose H0 to be either a simple hypothesis or the default which we’ll only reject if we
have enough evidence against it. The examples below will clarify this.

4 NHST Terminology

In this section we will use one extended example to introduce and explore the terminology
used in null hypothesis significance testing (NHST).

Example 3. To test whether a coin is fair we flip it 10 times. If we get an unexpectedly
large or small number of heads we’ll suspect the coin is unfair. To make this precise in the
language of NHST we set up the ingredients as follows. Let θ be the probability that the
coin lands heads when flipped.

1. Null hypothesis: H0 = ‘the coin is fair’, i.e. θ = 0.5.
2. Alternative hypothesis: HA = ‘the coin is not fair’, i.e. θ �= .5
3. Test statistic: X = number of heads in 10 flips
4. Null distribution: This is the probability function based on the null hypothesis

p(x | θ = 0.5) ∼ binomial(10, 0.5).
Here is the probability table for the null distribution.

x 0 1 2 3 4 5 6 7 8 9 10

p(x |H0) .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001

5. Rejection region: under the null hypothesis we expect to get about 5 heads in 10 tosses.
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We’ll reject H0 if the number of heads is much fewer or greater than 5. Let’s set the rejection
region as {0, 1, 2, 8, 9, 10}. That is, if the number of heads in 10 tosses is in this region we
will reject the hypothesis that the coin is fair in favor of the hypothesis that it is not.

We can summarize all this in the graph and probability table below. The rejection region
consists of those values of x in red. The probabilities corresponding to it are shaded in red.
We also show the null distribution as a stem plot with the rejection values of x in red.

x 0 1 2 3 4 5 6 7 8 9 10

p(x|H0) .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001

Rejection region and null probabilities as a table for Example 3.

x

p(x |H0)

.05

.15

.25

3 4 5 6 70 1 2 8 9 10

Rejection region and null probabilities as a stemp plot for Example 3.

Notes for Example 3:
1. The null hypothesis is the cautious default: we won’t claim the coin is unfair unless we
have compelling evidence.
2. The rejection region consists of data that is extreme under the null hypothesis. That is,
it consists of the outcomes that are in the tail of the null distribution away from the high
probability center. As we’ll discuss soon, how far away depends on the significance level α
of the test.
3. If we get 3 heads in 10 tosses, then the test statistic is in the non-rejection region. The
usual scientific language would be to say that the data ‘does not support rejecting the null
hypothesis’. Even if we got 5 heads, we would not claim that the data proves the null
hypothesis is true.

Question: If we have a fair coin what is the probability that we will decide incorrectly it
is unfair?

answer: The null hypothesis is that the coin is fair. The question asks for the probability
the data from a fair coin will be in the rejection region. That is, the probability that we
will get 0, 1, 2, 8, 9 or 10 heads in 10 tosses. This is the sum of the probabilities in red.
That is,

P (rejecting H0 |H0 is true) = 0.11

Below we will continue with Example 3, define more terms used in NHST and see how to
quantify properties of the significance test.

4.1 Simple and composite hypotheses

Definition: simple hypothesis: A simple hypothesis is one for which we can specify its
distribution completely. A typical simple hypothesis is that a parameter of interest takes a
specific value.
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Definition: composite hypotheses: If its distribution cannot be fully specified, we say
that the hypothesis is composite. A typical composite hypothesis is that a parameter of
interest lies in a range of values.

In Example 3 the null hypothesis is that θ = 0.5, so the null distribution is binomial(10, 0.5).
Since the null distribution is fully specified, H0 is simple. The alternative hypothesis is that
θ �= 0.5. This is really many hypotheses in one: θ could be 0.51, 0.7, 0.99, etc. Since the
alternative distribution binomial(10, θ) is not fully specified, HA is composite.

Example 4. Suppose we have data x1, . . . , xn. Suppose also that our hypotheses are
H0: the data is drawn from N(0, 1)
HA: the data is drawn from N(1, 1).
These are both simple hypotheses – each hypothesis completely specifies a distribution.

Example 5. (Composite hypotheses.) Now suppose that our hypotheses are
H0: the data is drawn from a Poisson distribution of unknown parameter.
HA: the data is not drawn from a Poisson distribution.
These are both composite hypotheses, as they don’t fully specify the distribution.

Example 6. In an ESP experiment a subject is asked to identify the suits of 100 cards
drawn (with replacement) from a deck of cards. Let T be the number of successes. The
(simple) null hypothesis that the subject does not have ESP is given by

H0: T ∼ binomial(100, 0.25)

The (composite) alternative hypothesis that the subject has ESP is given by

HA: T ∼ binomial(100, p) with p > 0.25

Another (composite) alternative hypothesis that something besides pure chance is going on,
i.e. the subject has ESP or anti-ESP. This is given by

HA: T ∼ binomial(100, p), with p �= 0.25

Values of p < 0.25 represent hypotheses that the subject has a kind of anti-esp.

4.2 Types of error

There are two types of errors we can make. We can incorrectly reject the null hypothesis
when it is true or we can incorrectly fail to reject it when it is false. These are unimagina-
tively labeled type I and type II errors. We summarize this in the following table.

True state of nature
H0 HA

Our Reject H0 Type I error correct decision
decision ‘Don’t reject’ H0 correct decision Type II error

Type I: false rejection of H0

Type II: false non-rejection (‘acceptance’) of H0

4.3 Significance level and power

Significance level and power are used to quantify the quality of the significance test. Ideally
a significance test would not make errors. That is, it would not reject H0 when H0 was true
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and would reject H0 in favor of HA when HA was true. Altogether there are 4 important
probabilities corresponding to the 2× 2 table just above.

P (reject H0|H0) P (reject H0|HA)
P (do not reject H0|H0) P (do not reject H0|HA)

The two probabilities we focus on are:

Significance level = P (reject H0|H0)
= probability we incorrectly reject H0

= P (type I error).

Power = probability we correctly reject H0

= P (reject H0|HA)
= 1− P (type II error).

Ideally, a hypothesis test should have a small significance level (near 0) and a large power
(near 1). Here are two analogies to help you remember the meanings of significance and
power.

Some analogies
1. Think of H0 as the hypothesis ‘nothing noteworthy is going on’, i.e. ‘the coin is fair’,
‘the treatment is no better than placebo’ etc. And think of HA as the opposite: ‘something
interesting is happening’. Then power is the probability of detecting something interesting
when it’s present and significance level is the probability of mistakenly claiming something
interesting has occured.

2. In the U.S. criminal defendents are presumed innocent until proven guilty beyond a
reasonable doubt. We can phrase this in NHST terms as

H0: the defendent is innocent (the default)
HA: the defendent is guilty.

Significance level is the probability of finding and innocent person guilty. Power is the
probability of correctly finding a guilty party guilty. ‘Beyond a reasonable doubt’ means
we should demand the significance level be very small.

Composite hypotheses

HA is composite in Example 3, so the power is different for different values of θ. We expand
the previous probability table to include some alternate values of θ. We do the same with
the stem plots. As always in the NHST game, we look at likelihoods: the probability of the
data given a hypothesis.

x 0 1 2 3 4 5 6 7 8 9 10

H0 : p(x|θ = 0.5) .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001

HA : p(x|θ = 0.6) .000 .002 .011 .042 .111 .201 .251 .215 .121 .040 .006

HA : p(x|θ = 0.7) .000 .0001 .001 .009 .037 .103 .200 .267 .233 .121 .028
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p(x |H0)

.05

.15

.25

3 4 5 6 70 1 2 8 9 10

p(x | θ = .6)

.05

.15

.25

3 4 5 6 70 1 2 8 9 10
x

p(x | θ = .7)

.05

.15

.25

3 4 5 6 70 1 2 8 9 10

Rejection region and null and alternative probabilities for example 3

We use the probability table to compute the significance level and power of this test.

Significance level = probability we reject H0 when it is true
= probability the test statistic is in the rejection region when H0 is true
= probability the test stat. is in the rejection region of the H0 row of the table
= sum of red boxes in the θ = 0.5 row
= 0.11

Power when θ = 0.6 = probability we reject H0 when θ = 0.6
= probability the test statistic is in the rejection region when θ = 0.6
= probability the test stat. is in the rejection region of the θ = 0.6 row of the table
= sum of dark blue boxes in the θ = 0.6 row
= 0.180

Power when θ = 0.7 = probability we reject H0 when θ = 0.7
= probability the test statistic is in the rejection region when θ = 0.7
= probability the test stat. is in the rejection region of the θ = 0.7 row of the table
= sum of dark green boxes in the θ = 0.7 row
= 0.384

We see that the power is greater for θ = 0.7 than for θ = 0.6. This isn’t surprising since we
expect it to be easier to recognize that a 0.7 coin is unfair than is is to recognize 0.6 coin
is unfair. Typically, we get higher power when the alternate hypothesis is farther from the
null hypothesis. In Example 3, it would be quite hard to distinguish a fair coin from one
with θ = 0.51.

4.4 Conceptual sketches

We illustrate the notions of null hypothesis, rejection region and power with some sketches
of the pdfs for the null and alternative hypotheses.

4.4.1 Null distribution: rejection and non-rejection regions

The first diagram below illustrates a null distribution with rejection and non-rejection re-
gions. Also shown are two possible test statistics: x1 and x2.
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x

f(x|H0)

0-3 3x1x2

reject H0 reject H0don’t reject H0

The test statistic x1 is in the non-rejection region. So, if our data produced the test statistic
x1 then we would not reject the null hypothesis H0. On the other hand the test statistic x2
is in the rejection region, so if our data produced x2 then we would reject the null hypothesis
in favor of the alternative hypothesis.

There are several things to note in this picture.
1. The rejection region consists of values far from the center of the null distribution.
2. The rejection region is two-sided. We will also see examples of one-sided rejection regions
as well.
3. The alternative hypothesis is not mentioned. We reject or don’t reject H0 based only
on the likelihood f(x|H0), i.e. the probability of the test statistic conditioned on H0. As
we will see, the alternative hypothesis HA should be considered when choosing a rejection
region, but formally it does not play a role in rejecting or not rejection H0.
4. Sometimes we rather lazily call the non-rejection region the acceptance region. This is
technically incorrect because we never truly accept the null hypothesis. We either reject or
say the data does not support rejecting H0. This is often summarized by the statement:
you can never prove the null hypothesis.

4.4.2 High and low power tests

The next two figures show high and low power tests.

The shaded area under f(x|H0) represents the significance level. Remember the significance
level is

• The probability of falsely rejecting the null hypothesis when it is true.

• The probabilitiy the test statistic falls in the rejection region even though H0 is true.

Likewise, the shaded area under f(x|HA) represents the power, i.e. the probability that the
test statistic is in the rejection (of H0) region when HA is true. Both tests have the same
significance level, but if f(x|HA) has considerable overlap with f(x|H0) the power is much
lower. It is well worth your while to thoroughly understand these graphical representations
of significance testing.
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x

f(x|H0)

0

f(x|HA)

-4

.reject H0 region non-reject H0 region

High power test

x1 x2 x3

x

f(x|H0)

0

f(x|HA)

-0.4
.reject H0 region non-reject H0 region

Low power test

x1 x2 x3

In both tests both distributions are standard normal. The null distribution, rejection region
and significance level are all the same. (The significance level is the red/purple area under
f(x |H0 and above the rejection region.) In the top figure we see the means of the two
distributions are 4 standard deviations apart. Since the areas under the densities have very
little overlap the test has high power. That is if the data x is drawn from HA it will almost
certainly be in the rejection region. For example x3 would be a very surprising outcome for
the HA distribution.

In the bottom figure we see the means of the two distributions are just 0.4 standard devia-
tions apart. Since the areas under the densities have a lot of overlap the test has low power.
That is if the data x is drawn from HA it is highly likely to be in the non-rejection region.
For example x3 would be not be a very surprising outcome for the HA distribution.

Typically we can increase the power of a test by increasing the amount of data and thereby
decreasing the variance of the null and alternative distributions. In experimental design it
is important to determine ahead of time the number of trials or subjects needed to achieve
a desired power.

Example 7. Suppose a drug for a disease is being compared to a placebo. We choose our
null and alternative hypotheses as

H0 = the drug does not work better than the placebo

HA = the drug works better than the placebo

The power of the hypothesis test is the probability that the test will conclude that the drug
is better, if it is indeed truly better. The significance level is the probability that the test
will conclude that the drug works better, when in fact it does not.
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5 Designing a hypothesis test

Formally all a hypothesis test requires is H0, HA, a test statistic and a rejection region. In
practice the design is often done using the following steps.

1. Pick the null hypothesis H0.
The choice of H0 and HA is not mathematics. It’s art and custom. We often choose H0 to
be simple. Or we often choose H0 to be the simplest or most cautious explanation, i.e. no
effect of drug, no ESP, no bias in the coin.

2. Decide if HA is one-sided or two-sided.
In the example 3 we wanted to know if the coin was unfair. An unfair coin could be biased
for or against heads, so HA : θ �= 0.5 is a two-sided hypothesis. If we only care whether or
not the coin is biased for heads we could use the one-sided hypothesis HA : θ > 0.5.

3. Pick a test statistic.
For example, the sample mean, sample total, or sample variance. Often the choice is obvious.
Some standard statistics that we will encounter are z, t, and χ2. We will learn to use these
statistics as we work examples over the next few classes. One thing we will say repeatedly
is that the distributions that go with these statistics are always conditioned on the null
hypothesis. That is, we will compute likelihoods such as f(z |H0).

4. Pick a significance level and determine the rejection region.
We will usually use α to denote the significance level. The Neyman-Pearson paradigm is to
pick α in advance. Typical values are 0.1, 0.05, 0.01. Recall that the significance level is
the probability of a type I error, i.e. of incorrectly rejecting the null hypothesis when it is
true. The value we choose will depend on the consequences of a type I error.

Once the significance level is chosen we can determine the rejection region in the tail(s) of
the null distribution. In Example 3, HA is two sided so the rejection region is split between
the two tails of the null distribution. This distribution is given in the following table:

x 0 1 2 3 4 5 6 7 8 9 10

p(x|H0) .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001

If we set α = 0.05 then the rejection region must contain at most .05 probability. For a
two-sided rejection region we get

{0, 1, 9, 10}.
If we set α = 0.01 the rejection region is

{0, 10}.

Suppose we change HA to ‘the coin is biased in favor of heads’. We now have a one-sided
hypothesis θ > 0.5. Our rejection region will now be in the right-hand tail since we don’t
want to reject H0 in favor of HA if we get a small number of heads. Now if α = 0.05 the
rejection region is the one-sided range

{9, 10}.
If we set α = 0.01 then the rejection region is

{10}.
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5. Determine the power(s).
As we saw in Example 3, once the rejection region is set we can determine the power of the
test at various values of the alternate hypothesis.

Example 8. (Consequences of significance) If α = 0.1 then we’d expect a 10% type
I error rate. That is, we expect to reject the null hypothesis in 10% of those experiments
where the null hypothesis is true. Whether 0.1 is a reasonable signficance level depends on
the decisions that will be made using it.

For example, if you were running an experiminent to determine if your chocolate is more
than 72% cocoa then a 10% error type I error rate is probably okay. That is, falsely believing
some 72% chocalate is greater that 72%, is probably acceptable. On the other hand, if your
forensic lab is identifying fingerprints for a murder trial then a 10% type I error rate, i.e.
mistakenly claiming that fingerprints found at the crime scene belonged to someone who
was truly innocent, is definitely not acceptable.

Significance for a composite null hypothesis. IfH0 is composite then P(type I error) depends
on which member of H0 is true. In this case the significance level is defined as the maximum
of these probabilities.

6 Critical values

Critical values are like quantiles except they refer to the probability to the right of the value
instead of the left.

Example 9. Use R to find the 0.05 critical value for the standard normal distribution.

answer: We label this critical value z0.05. The critical value z0.05 is just the 0.95 quantile,
i.e. it has 5% probability to its right and therefore 95% probability to its left. We computed
it with the R function qnorm: qnorm(0.95, 0, 1), which returns 1.64.

In a typical significance test the rejection region consists of one or both tails of the null
distribution. The value of the test significant that marks the start of the rejection region is
a critical value. We show this and the notation used in some examples.

Example 10. Critical values and rejection regions. Suppose our test statistic x has null
distribution is N(100, 152), i.e. f(x|H0) ∼ N(100, 152). Suppose also that our rejection
region is right-sided and we have a significance level of 0.05. Find the critical value and
sketch the null distribution and rejection region.

answer: The notation used for the critical value with right tail containing probability 0.05
is x0.05. The critical value x0.05 is just the 0.95 quantile, i.e. it has 5% probability to its
right and therefore 95% probability to its left. We computed it with the R function qnorm:
qnorm(0.95, 100, 15), which returned 124.7. This is shown in the figure below.
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x

f(x|H0) ∼ N(100, 152)

x0.05100
reject H0non-reject H0

x0.05 = 124.7
α = red = 0.05

Example 11. Critical values and rejection regions. Repeat the previous example for a
left-sided rejection region with significance level 0.05. In this case, the start of the rejection
region is at the 0.05 quantile. Since there is 95%

answer: In this case the critical value has 0.05 probability to its left and therefore 0.95
probability to its right. So we label it x0.95. Since it is the 0.05 quantile compute it with
the R function: qnorm(0.05, 100, 15), which returned 75.3.

x

f(x|H0) ∼ N(100, 152)

x0.95 100
reject H0 non-reject H0

x0.95 = 75.3
α = red = 0.05

Example 12. Critical values. Repeat the previous example for a two-sided rejection region.
Put half the significance in each tail.

answer: To have a total significance of 0.05 we put 0.025 in each tail. That is, the left tail
starts at x0.975 = q0.025 and the right tail starts at x0.025 = q0.975. We compute these values
with qnorm(0.025, 100, 15) and qnorm(0.975, 100, 15). The values are shown in the
figure below.

x

f(x|H0) ∼ N(100, 152)f(x|H0) ∼ N(100, 152)

x0.975 x0.025100
reject H0 reject H0non-reject H0

x0.025 = 129.4
x0.975 = 70.6
α = red = 0.05

7 p-values

In practice people often specify the significance level and do the significance test using what
are called p-values. We will first define p-value and the see that

If the p-value is less than the significance level α then qw reject H0. Other-
wise we do not reject H0.

Definition. The p-value is the probability, assuming the null hypothesis, of seeing data at
least as extreme as the experimental data. What ‘at least as extreme’ means depends on
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the experimental design.

We illustrate the definition and use of p-values with a simple one-sided example. In later
classes we will look at two-sided examples. This example also introduces the z-test. All this
means is that our test statistic is standard normal (or approximately standard normal).

Example 13. The z-test for normal hypotheses
IQ is normally distributed in the population according to a N(100, 152) distribution. We
suspect that most MIT students have above average IQ so we frame the following hypothe-
ses.

H0 = MIT student IQs are distributed identically to the general population
= MIT IQ’s follow a N(100, 152) distribution.

HA = MIT student IQs tend to be higher than those of the general population
= the average MIT student IQ is greater than 100.

Notice that HA is one-sided.

Suppose we test 9 students and find they have an average IQ of x = 112. Can we reject H0

at a significance level α = 0.05?

answer: To compute p we first standardize the data: Under the null hypothesis x̄ ∼
N(100, 152/9) and therefore

x̄
z =

− 100

15/
√
9

=
36

= 2.4 ∼ N(0, 1).
15

That is, the null distribution for z is standard normal. We call z a z-statistic, we will use
it as our test statistic.

For a right-sided alternative hypothesis the phrase ‘data at least as extreme’ is a one-sided
tail to the right of z. The p-value is then

p = P (Z ≥ 2.4) = 1- pnorm(2.4,0,1) = 0.0081975.

Since p ≤ α we reject the null hypothesis. The reason this works is explained below. We
phrase our conclusion as

We reject the null hypothesis in favor of the alternative hypothesis that MIT
students have higher IQs on average. We have done this at significance level
0.05 with a p-value of 0.008.

Notes: 1. The average x = 112 is random: if we ran the experiment again we could get a
different value for x.

2. We could use the statistic x directly. Standardizing is fairly standard because, with
practice, we will have a good feel for the meaning of different z-values.

The justification for rejecting H0 when p ≤ α is given in the following figure.
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z

f(z|H0) ∼ N(0, 1)

z0.05 2.4

reject H0non-reject H0

z0.05 = 1.64
α = pink + red = 0.05
p = red = 0.008

In this example α = 0.05, z0.05 = 1.64 and the rejection region is the range to the right
of z0.05. Also, z = 2.4 and the p-value is the probability to the right of z. The picture
illustrates that

• z = 2.64 is in the rejection region

• is the same as z is to the right of z0.05

• is the same as the probability to the right of z is less than 0.05

• which means p < 0.05.

8 More examples

Hypothesis testing is widely used in inferential statistics. We don’t expect that the following
examples will make perfect sense at this time. Read them quickly just to get a sense of how
hypothesis testing is used. We will explore the details of these examples in class.

Example 14. The chi-square statistic and goodness of fit. (Rice, example B, p.313)

To test the level of bacterial contamination, milk was spread over a grid with 400 squares.
The amount of bacteria in each square was counted. We summarize in the table below.
The bottom row of the table is the number of different squares that had a given amount of
bacteria.

Amount of bacteria 0 1 2 3 4 5 6 7 8 9 10 19

Number of squares 56 104 80 62 42 27 9 9 5 3 2 1

We compute that the average amount of bacteria per square is 2.44. Since the Poisson(λ)
distribution is used to model counts of relatively rare events and the parameter λ is the
expected value of the distribution. we decide to see if these counts could come from a
Poisson distribution. To do this we first graphically compare the observed frequencies with
those expected from Poisson(2.44).
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The picture is suggestive, so we do a hypothesis test with

H0 : the samples come from a Poisson(2.44) distribution.

HA : the samples come from a different distribution.

We use a chi-square statistic, so called because it (approximately) follows a chi-square
distribution. To compute X2 we first combine the last few cells in the table so that the
minimum expected count is around 5 (a general rule-of-thumb in this game.)

The expected number of squares with a certain amount of bacteria comes from considering
400 trials from a Poisson(2.44) distribution, e.g., with l = 2.44 the expected number of

3

squares with 3 bacteria is 400 e−l l×
3!

= 84.4.

The chi-square statistic is
∑ (Oi − Ei)

2

, where Oi is the observed number and Ei is the
Ei

expected number.

Number per square 0 1 2 3 4 5 6 > 6

Observed 56 104 80 62 42 27 9 20

Expected 34.9 85.1 103.8 84.4 51.5 25.1 10.2 5.0

Component of X2 12.8 4.2 5.5 6.0 1.7 0.14 0.15 44.5

Summing up we get X2 = 74.9.

Since the mean (2.44) and the total number of trials (400) are fixed, the 8 cells only have
6 degrees of freedom. So, assuming H0, our chi-square statistic follows (approximately) a
χ2
6 distribution. Using this distribution, P (X2 > 74.59) = 0 (to at least 6 decimal places).

Thus we decisively reject the null hpothesis in favor of the alternate hypothesis that the
distribution is not Poisson(2.44).

To analyze further, look at the individual components of X2. There are large contributions
in the tail of the distribution, so that is where the fit goes awry.
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Example 15. Student’s t test.

Suppose we want to compare a medical treatment for increasing life expectancy with a
placebo. We give n people the treatment and m people the placebo. Let X1, . . . , Xn be the
number of years people live after receiving the treatment. Likewise, let Y1, . . . , Ym be the

¯ ¯number of years people live after receiving the placebo. Let X and Y be the sample means.
¯ ¯We want to know if the difference between X and Y is statistically significant. We frame

this as a hypothesis test. Let μX and μY be the (unknown) means.

H0 : μX = μY , HA : μX �= μY .

With certain assumptions and a proper formula for the pooled standard error sp the test
X̄ Y

t =
− ¯

statistic follow a t distribution with n + m − 2 degrees of freedom. So our
sp

rejection region is determined by a threshold t0 with P (t > t0) = α.
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