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1 Learning Goals 

1. Understand the benefits of conjugate priors. 

2. Be able to update a beta prior given a Bernoulli, binomial, or geometric likelihood. 

3. Understand and be able to use the formula for updating a normal prior given a normal 
likelihood with known variance. 

2 Introduction and definition 

In this reading, we will elaborate on the notion of a conjugate prior for a likelihood function. 
With a conjugate prior the posterior is of the same type, e.g. for binomial likelihood the beta 
prior becomes a beta posterior. Conjugate priors are useful because they reduce Bayesian 
updating to modifying the parameters of the prior distribution (so-called hyperparameters) 
rather than computing integrals. 

Our focus in 18.05 will be on two important examples of conjugate priors: beta and normal. 
For a far more comprehensive list, see the tables herein: 

http://en.wikipedia.org/wiki/Conjugate_prior_distribution 

We now give a definition of conjugate prior. It is best understood through the examples in 
the subsequent sections. 

Definition. Suppose we have data with likelihood function f(x|θ) depending on a hypothe
sized parameter. Also suppose the prior distribution for θ is one of a family of parametrized 
distributions. If the posterior distribution for θ is in this family then we say the the prior 
is a conjugate prior for the likelihood. 

3 Beta distribution 

In this section, we will show that the beta distribution is a conjugate prior for binomial, 
Bernoulli, and geometric likelihoods. 

3.1 Binomial likelihood 

We saw last time that the beta distribution is a conjugate prior for the binomial distribution. 
This means that if the likelihood function is binomial and the prior distribution is beta then 
the posterior is also beta. 
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More specifically, suppose that the likelihood follows a binomial(N, θ) distribution where N 
is known and θ is the (unknown) parameter of interest. We also have that the data x from 
one trial is an integer between 0 and N . Then for a beta prior we have the following table: 

hypothesis data prior likelihood posterior 
θ x beta(a, b) binomial(N, θ) beta(a + x, b + N − x) 
θ x c1θ

a−1(1 − θ)b−1 c2θ
x(1 − θ)N−x c3θ

a+x−1(1 − θ)b+N−x−1 

The table is simplified by writing the normalizing coefficient as c1, c2 and c3 respectively. 
If needed, we can recover the values of the c1 and c2 by recalling (or looking up) the 
normalizations of the beta and binomial distributions.   

(a + b − 1)! N N ! (a + b + N − 1)! 
c1 = c2 = = c3 = 

(a − 1)! (b − 1)! x x! (N − x)! (a + x − 1)! (b + N − x − 1)! 

3.2 Bernoulli likelihood 

The beta distribution is a conjugate prior for the Bernoulli distribution. This is actually 
a special case of the binomial distribution, since Bernoulli(θ) is the same as binomial(1, 
θ). We do it separately because it is slightly simpler and of special importance. In the 
table below, we show the updates corresponding to success (x = 1) and failure (x = 0) on 
separate rows. 

hypothesis data prior likelihood posterior 
θ x beta(a, b) Bernoulli(θ) beta(a + 1, b) or beta(a, b + 1) 
θ x = 1 c1θ

a−1(1 − θ)b−1 θ c3θ
a(1 − θ)b−1 

θ x = 0 c1θ
a−1(1 − θ)b−1 1 − θ c3θ

a−1(1 − θ)b 

The constants c1 and c3 have the same formulas as in the previous (binomial likelihood 
case) with N = 1. 

3.3 Geometric likelihood 

Recall that the geometric(θ) distribution describes the probability of x successes before 
the first failure, where the probability of success on any single independent trial is θ. The 
corresponding pmf is given by p(x) = θx(1 − θ). 

Now suppose that we have a data point x, and our hypothesis θ is that x is drawn from a 
geometric(θ) distribution. From the table we see that the beta distribution is a conjugate 
prior for a geometric likelihood as well: 

hypothesis data prior likelihood posterior 
θ x beta(a, b) geometric(θ) beta(a + x, b + 1) 
θ x c1θ

a−1(1 − θ)b−1 θx(1 − θ) c3θ
a+x−1(1 − θ)b 

At first it may seem strange that the beta distribution is a conjugate prior for both the 
binomial and geometric distributions. The key reason is that the binomial and geometric 
likelihoods are proportional as functions of θ. Let’s illustrate this in a concrete example. 

Example 1. While traveling through the Mushroom Kingdom, Mario and Luigi find some 
rather unusual coins. They agree on a prior of f(θ) ∼ beta(5,5) for the probability of heads, 
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though they disagree on what experiment to run to investigate θ further.
 

a) Mario decides to flip a coin 5 times. He gets four heads in five flips.
 

b) Luigi decides to flip a coin until the first tails. He gets four heads before the first tail.
 

Show that Mario and Luigi will arrive at the same posterior on θ, and calculate this posterior.
 

answer: We will show that both Mario and Luigi find the posterior pdf for θ is a beta(9, 6)
 
distribution.
 

Mario’s table
 
hypothesis data prior likelihood posterior 

θ x = 4 beta(5, 5) binomial(5,θ)_ _ ??? 
θ x = 4 c1θ

4(1 − θ)4 5 
4 θ

4(1 − θ) c3θ
8(1 − θ)5 

Luigi’s table
 
hypothesis data prior likelihood posterior 

θ x = 4 beta(5, 5) geometric(θ) ??? 
θ x = 4 c1θ

4(1 − θ)4 θ4(1 − θ) c3θ
8(1 − θ)5 

Since both Mario and Luigi’s posterior has the form of a beta(9, 6) distribution that’s what 
they both must be. The normalizing factor is the same in both cases because it’s determined 
by requiring the total probability to be 1. 

Normal begets normal 

We now turn to another important example: the normal distribution is its own conjugate 
prior. In particular, if the likelihood function is normal with known variance, then a normal 
prior gives a normal posterior. Now both the hypotheses and the data are continuous. 

Suppose we have a measurement x ∼ N(θ, σ2) where the variance σ2 is known. That is, the 
mean θ is our unknown parameter of interest and we are given that the likelihood comes 
from a normal distribution with variance σ2 . If we choose a normal prior pdf 

f(θ) ∼ N(µprior, σ
2 
prior) 

then the posterior pdf is also normal: f(θ|x) ∼ N(µpost, σ
2 ) where post

µpost µprior x 1 1 1 
= + , = + (1)

σ2 σ2 σ2 σ2 σ2 σ2 
post prior post prior 

The following form of these formulas is easier to read and shows that µpost is a weighted 
average between µprior and the data x. 

1 1 aµprior + bx 1 
σ2 a = b = , µpost = , post = . (2)

σ2 σ2 a + b a + bprior 

With these formulas in mind, we can express the update via the table: 

hypothesis data prior likelihood posterior 
θ x f(θ) ∼ N(µprior, σ2 

prior) f(x|θ) ∼ N(θ, σ2) f(θ|x) ∼ N(µpost, σ2 
post) 

θ x c1 exp −(θ−µprior)
2 

2σ2 
prior 

c2 exp 
_ 
−(x−θ)2 

2σ2 

_ 
c3 exp 

_ 
−(θ−µpost)2 

2σ2 
post 

_ ( )
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We leave the proof of the general formulas to the problem set. It is an involved algebraic 
manipulation which is essentially the same as the following numerical example. 

Example 2. Suppose we have prior θ ∼ N(4, 8), and likelihood function likelihood x ∼ 
N(θ, 5). Suppose also that we have one measurement x1 = 3. Show the posterior distribution 
is normal. 

answer: We will show this by grinding through the algebra which involves completing the 
square. 

−(θ−4)2/16 −(x1−θ)2/10 −(3−θ)2/10prior: f(θ) = c1 e ; likelihood: f(x1|θ) = c2 e = c2 e 

We multiply the prior and likelihood to get the posterior: 

−(θ−4)2/16 −(3−θ)2/10f(θ|x1) = c3 e e 

(θ − 4)2 (3 − θ)2 

= c3 exp − − 
16 10 

We complete the square in the exponent 

(θ − 4)2 (3 − θ)2 5(θ − 4)2 + 8(3 − θ)2 

− − = −
16 10 80 

13θ2 − 88θ + 152 
= − 

80 
θ2 − 88 152θ +13 13= − 

80/13 

(θ − 44/13)2 + 152/13 − (44/13)2 

= − . 
80/13 

Therefore the posterior is 

(θ−44/13)2+152/13−(44/13)2 (θ−44/13)2 
− −

80/13 80/13f(θ|x1) = c3 e = c4 e . 

This has the form of the pdf for N(44/13, 40/13). QED 

For practice we check this against the formulas (2). 

1 1 
µprior = 4, σ2 σ2 = 5 ⇒ a = , b = .prior = 8, 

8 5 

Therefore 

aµprior + bx 44 
µpost = = = 3.38 

a + b 13 
1 40 

σ2 = = = 3.08.post a + b 13 

Example 3. Suppose that we know the data x ∼ N(θ, 1) and we have prior N(0, 1). We 
get one data value x = 6.5. Describe the changes to the pdf for θ in updating from the 
prior to the posterior. 

( )



5 18.05 class 15, Conjugate priors: Beta and normal, Spring 2014 

answer: Here is a graph of the prior pdf with the data point marked by a red line.
 

Prior in blue, posterior in magenta, data in red 

The posterior mean will be a weighted average of the prior mean and the data. So the peak 
of the posterior pdf will be be between the peak of the prior and the read line. A little 
algebra with the formula shows 

1 σ 
σ2 = = σ2 · < σ2 
post prior prior1/σ2 + 1/σ2 σ2 + σ2 

prior prior 

That is the posterior has smaller variance than the prior, i.e. data makes us more certain 
about where in its range θ lies. 

4.1 More than one data point 

Example 4. Suppose we have data x1, x2, x3. Use the formulas (1) to update sequentially. 

answer: Let’s label the prior mean and variance as µ0 and σ0
2 . The updated means and 

variances will be µi and σi 
2 . In sequence we have 

1 1 1 µ1 µ0 x1 
= + ; = + 

σ2 σ2 σ2 σ2 σ2 σ2 
1 0 1 0 
1 1 1 1 2 µ2 µ1 x2 µ0 x1 + x2 

= + = + ; = + = + 
σ2 σ2 σ2 σ2 σ2 σ2 σ2 σ2 σ2 σ2 
2 1 0 2 1 0 
1 1 1 1 3 µ3 µ2 x3 µ0 x1 + x2 + x3 

= + = + ; = + = + 
σ2 σ2 σ2 σ2 σ2 σ2 σ2 σ2 σ2 σ2 
3 2 0 3 2 0 

The example generalizes to n data values x1, . . . , xn: 
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Normal-normal update formulas for n data points
 

µpost µprior nx̄ 1 1 n x1 + . . . + xn 
= + , = + , x̄ = . (3)

σ2 σ2 σ2 σ2 σ2 σ2 npost prior post prior 

Again we give the easier to read form, showing µpost is a weighted average of µprior and the 
sample average x̄: 

1 n aµprior + bx̄ 1 
a = b = , µpost = , σ2 = . (4)post σ2 σ2 a + b a + bprior 

Interpretation: µpost is a weighted average of µprior and x̄. If the number of data points is 
large then the weight b is large and x̄ will have a strong influence on the posterior. If σ2 

prior 
is small then the weight a is large and µprior will have a strong influence on the posterior. 
To summarize: 

1. Lots of data has a big influence on the posterior. 
2. High certainty (low variance) in the prior has a big influence on the posterior. 

The actual posterior is a balance of these two influences. 
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