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1 Learning Goals 

1. Be able to construct a Bayesian update table for continuous hypotheses and continuous 
data. 

2. Be able to recognize the pdf of a normal distribution and determine its mean and variance. 

2 Introduction 

We are now ready to do Bayesian updating when both the hypotheses and the data take 
continuous values. The pattern is the same as what we’ve done before, so let’s first review 
the previous two cases. 

3 Previous cases 

1. Discrete hypotheses, discrete data 

Notation 

• Hypotheses H 

• Data x 

• Prior P (H) 

• Likelihood p(x |H) 

• Posterior P (H | x). 

Example 1. Suppose we have data x and three possible explanations (hypotheses) for the 
data that we’ll call A, B, C. Suppose also that the data can take two possible values, -1 
and 1. 

In order to use the data to help estimate the probabilities of the different hypotheses we 
need a prior pmf and a likelihood table. Assume the prior and likelihoods are given in 
the following table. (For this example we are only concerned with the formal process of of 
Bayesian updating. So we just made up the prior and likelihoods.) 
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hypothesis prior 
H P (H) 
A 0.1 
B 0.3 
C 0.6 

hypothesis likelihood p(x |H) 
H x = −1 x = 1 
A 0.2 0.8 
B 0.5 0.5 
C 0.7 0.3 

Prior probabilities Likelihoods 

Naturally, each entry in the likelihood table is a likelihood p(x |H). For instance the 0.2 
row A and column x = −1 is the likelihood p(x = −1 | A). 

Question: Suppose we run one trial and obtain the data x1 = 1. Use this to find the 
posterior probabilities for the hypotheses. 

answer: The data picks out one column from the likelihood table which we then use in our 
Bayesian update table. 

hypothesis prior likelihood 
Bayes 

numerator posterior 

H P (H) p(x = 1 | H) p(x | H)P (H) P (H | x) = 
p(x | H)P (H) 

p(x) 
A 
B 
C 

0.1 
0.3 
0.6 

0.8 
0.5 
0.3 

0.08 
0.15 
0.18 

0.195 
0.366 
0.439 

total 1 p(x) = 0.41 1 

To summarize: the prior probabilities of hypotheses and the likelihoods of data given hy
pothesis were given; the Bayes numerator is the product of the prior and likelihood; the 
total probability p(x) is the sum of the probabilities in the Bayes numerator column; and 
we divide by p(x) to normalize the Bayes numerator. 

2. Continuous hypotheses, discrete data 

Now suppose that we have data x that can take a discrete set of values and a continuous 
parameter θ that determines the distribution the data is drawn from. 

Notation 

• Hypotheses θ 

• Data x 

• Prior f(θ) dθ 

• Likelihood p(x | θ) 

• Posterior f(θ | x) dθ. 

Note: Here we multiplied by dθ to express the prior and posterior as probabilities. As 
densities, we have the prior pdf f(θ) and the posterior pdf f(θ | x). 
Example 2. Assume that x ∼ Binomial(5, θ). So θ is in the range [0, 1] and the data x 
can take six possible values, 0, 1, . . . , 5. 
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Since there is a continuous range of values we use a pdf to describe the prior on θ. Let’s 
suppose the prior is f(θ) = 2θ. We can still make a likelihood table, though it only has one 
row representing an arbitrary hypothesis θ. 

hypothesis likelihood p(x | θ) 

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 

θ
 5 
0

 
(1 − θ)5

 
5 
1

 
θ(1 − θ)4

 
5 
2

 
θ2(1 − θ)3

 
5 
3

 
θ3(1 − θ)2

 
5 
4

 
θ4(1 − θ)

 
5 
5

 
θ5 

Likelihoods 

Question: Suppose we run one trial and obtain the data x1 = 2. Use this to find the 
posterior pdf for the parameter (hypotheses) θ. 

answer: As before, the data picks out one column from the likelihood table which we can 
use in our Bayesian update table. Since we want to work with probabilities we write f(θ)d θ 
and f(θ | x1) dθ for the pdf’s. 

hypothesis prior likelihood 
Bayes 

numerator posterior 

θ f(θ) dθ p(x = 2 | θ) p(x | θ)f(θ) dθ f(θ | x) dθ = 
p(x | θ)f(θ) dθ 

p(x) 

θ 2θ dθ
 
5 
2

 
θ2(1 − θ)3 2

 
5 
2

 
θ3(1 − θ)3 dθ f(θ | x) dθ = 

3! 3! 
7! 

θ3(1 − θ)3 dθ 

total 1 p(x) =
 1 
0 2

 
5 
2

 
θ2(1 − θ)3 dθ = 2

 
5 
2

 
3! 3! 
7! 1 

To summarize: the prior probabilities of hypotheses and the likelihoods of data given hy
pothesis were given; the Bayes numerator is the product of the prior and likelihood; the 
total probability p(x) is the integral of the probabilities in the Bayes numerator column; 
and we divide by p(x) to normalize the Bayes numerator. 

Continuous hypotheses and continuous data 

When both data and hypotheses are continuous, the only change to the previous example is 
that the likelihood function uses a pdf f(x | θ) instead of a pmf p(x | θ). The general shape 
of the Bayesian update table is the same. 

Notation 

• Hypotheses θ 

• Data x 

• Prior f(θ)dθ 
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• Likelihood f(x | θ) dx

• Posterior f(θ |x) dθ.

Simplifying the notation. In the previous cases we included dθ so that we were working
with probabilities instead of densities. When both data and hypotheses are continuous
we will need both dθ and dx. This makes things conceptually simpler, but notationally
cumbersome. To simplify the notation we will allow ourselves to dx in our tables. This is
fine because the data x is a fixed. We keep the dθ because the hypothesis θ is allowed to
vary.

For comparison, we first show the general table in simplified notation followed immediately
afterward by the table showing the infinitesimals.

Bayes
hypoth. prior likelihood numerator posterior

f(x θ)f(θ) dθ
θ f(θ) dθ f(x | θ) f(x | θ)f(θ) dθ f(θ

||x) =
f(x)

total 1 f(x) =
∫
f(x | θ)f(θ) dθ 1

Bayesian update table without dx

Bayes
hypoth. prior likelihood numerator posterior

f(x θ)f(θ) dθ dx f(x θ)f(θ)
θ f(θ) dθ f(x | θ) dx f(x | θ)f(θ) dθ dx f(θ |x) dθ =

|
=

|
f(x) dx f(x)

total 1 f(x) dx =
(∫
f(x | θ)f(θ) dθ

)
dx 1

Bayesian update table with dθ and dx

To summarize: the prior probabilities of hypotheses and the likelihoods of data given hy-
pothesis were given; the Bayes numerator is the product of the prior and likelihood; the
total probability f(x) dx is the integral of the probabilities in the Bayes numerator column;
we divide by f(x) dx to normalize the Bayes numerator.

5 Normal hypothesis, normal data

A standard example of continuous hypotheses and continuous data assumes that both the
data and prior follow normal distributions. The following example assumes that the variance
of the data is known.

Example 3. Suppose we have data x = 5 which wass drawn from a normal distribution

dθ
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with unknown mean θ and standard deviation 1. 

x ∼ N(θ, 1) 

Suppose further that our prior distribution for θ is θ ∼ N(2, 1). 

Let x represent an arbitrary data value. 

(a) Make a Bayesian table with prior, likelihood, and Bayes numerator. 

(b) Show that the posterior distribution for θ is normal as well. 

(c) Find the mean and variance of the posterior distribution. 

answer: As we did with the tables above, a good compromise on the notation is to include 
dθ but not dx. The reason for this is that the total probability is computed by integrating 
over θ and the dθ reminds of us that. 

Our prior pdf is 
1 −(θ−2)2/2f(θ) = √ e . 
2π 

The likelihood function is 
1 −(5−θ)2/2f(x = 5 | θ) = √ e . 
2π 

We know we are going to multiply the prior and the likelihood, so we carry out that algebra 
first. In the very last step we simplify the constant factor into one constant we call c1. 

1 1−(θ−2)2/2 −(5−θ)2/2prior · likelihood = √ e · √ e 
2π 2π 

1 −(2θ2−14θ+29)/2 = e 
2π 
1 −(θ2−7θ+29/2)= e (complete the square) 
2π 
1 −((θ−7/2)2+9/4)= e 
2π 
−9/4e −(θ−7/2)2)= e 
2π 
−(θ−7/2)2 

= c1e 

In the last step we replaced the complicated constant factor by the simpler expression c1. 

hypothesis prior likelihood 
Bayes 

numerator 
posterior 

f(θ | x = 5) dθ 

θ f(θ) dθ f(x = 5 | θ) f(x = 5 | θ)f(θ) dθ 
f(x = 5 | θ)f(θ) dθ 

f(x = 5) 

θ √1 
2π 
e−(θ−2)2/2 dθ √1 

2π 
e−(5−θ)2/2 c1e

−(θ−7/2)2 
c2e

−(θ−7/2)2 

total 1 f(x = 5) = f(x = 5 | θ)f(θ) dθ 1 
∫
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We can see by the form of the posterior pdf that it is a normal distribution. Because the 
exponential for a normal distribution is e−(θ−µ)2/2σ2 

we have mean µ = 7/2 and 2σ2 = 1, 
so variance σ2 = 1/2. 

We don’t need to bother computing the total probability; it is just used for normalization 
and we already know the normalization constant √1 for a normal distribution. 

σ 2π 

Here is the graph of the prior and the posterior pdf’s for this example. Note how the data 
‘pulls’ the prior towards the data. 

prior = blue; posterior = purple; data = red 

Now we’ll repeat the previous example for general x. When reading this if you mentally 
substitute 5 for x you will understand the algebra. 

Example 4. Suppose our data x is drawn from a normal distribution with unknown mean 
θ and standard deviation 1. 

x ∼ N(θ, 1) 

answer: As before, we show the algebra used to simplify the Bayes numerator: The prior 
pdf and likelihood function are 

1 1−(θ−2)2/2 −(x−θ)2/2f(θ) = √ e f(x | θ) = √ e . 
2π 2π 

The Bayes numerator is the product of the prior and the likelihood: 

1 1−(θ−2)2/2 −(x−θ)2/2prior · likelihood = √ e · √ e 
2π 2π 

1 −(2θ2−(4+2x)θ+4+x2)/2 = e 
2π 
1 −(θ2−(2+x)θ+(4+x2)/2)= e (complete the square) 
2π 
1 −((θ−(1+x/2))2−(1+x/2)2+(4+x2)/2)= e 
2π 

−(θ−(1+x/2))2 
= c1e 

Just as in the previous example, in the last step we replaced all the constants, including 
the exponentials that just involve x, by by the simple constant c1. 
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Now the Bayesian update table becomes 

hypothesis prior likelihood 
Bayes 

numerator 
posterior 
f(θ | x) dθ 

θ f(θ) dθ f(x | θ) f(x | θ)f(θ) dθ 
f(x | θ)f(θ) dθ 

f(x) 

θ √1 
2π 
e−(θ−2)2/2 dθ √1 

2π 
e−(x−θ)2/2 c1e

−(θ−(1+x/2))2 
c2e

−(θ−(1+x/2))2 

total 1 f(x) = f(x | θ)f(θ) dθ 1 

As in the previous example we can see by the form of the posterior that it must be a normal 
distribution with mean 1 + x/2 and variance 1/2. (Compare this with the case x = 5 in the 
previous example.) 

Predictive probabilities 

Since the data x is continuous it has prior and posterior predictive pdfs. The prior predictive 
pdf is the total probability density computed at the bottom of the Bayes numerator column:  

f(x) = f(x|θ)f(θ) dθ, 

where the integral is computed over the entire range of θ. 

The posterior predictive pdf has the same form as the prior predictive pdf, except it use 
the posterior probabilities for θ:  

f(x2|x1) = f(x2|θ, x1)f(θ|x1) dθ, 

As usual, we usually assume x1 and x2 are conditionally independent. That is, 

f(x2|θ, x1) = f(x2|θ). 

In this case the formula for the posterior predictive pdf is a little simpler:  
f(x2|x1) = f(x2|θ)f(θ|x1) dθ, 
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