Beta Distributions
 Class 14, 18.05
 Jeremy Orloff and Jonathan Bloom

1 Learning Goals

1. Be familiar with the 2-parameter family of beta distributions and its normalization.
2. Be able to update a beta prior to a beta posterior in the case of a binomial likelihood.

2 Beta distribution

The beta distribution $\operatorname{beta}(a, b)$ is a two-parameter distribution with range $[0,1]$ and pdf

$$
f(\theta)=\frac{(a+b-1)!}{(a-1)!(b-1)!} \theta^{a-1}(1-\theta)^{b-1}
$$

We have made an applet so you can explore the shape of the Beta distribution as you vary the parameters:
http://mathlets.org/mathlets/beta-distribution/.
As you can see in the applet, the beta distribution may be defined for any real numbers $a>0$ and $b>0$. In 18.05 we will stick to integers a and b, but you can get the full story here: http://en.wikipedia.org/wiki/Beta_distribution
In the context of Bayesian updating, a and b are often called hyperparameters to distinguish them from the unknown parameter θ representing our hypotheses. In a sense, a and b are 'one level up' from θ since they parameterize its pdf.

2.1 A simple but important observation!

If a pdf $f(\theta)$ has the form $c \theta^{a-1}(1-\theta)^{b-1}$ then $f(\theta)$ is a $\operatorname{beta}(a, b)$ distribution and the normalizing constant must be

$$
c=\frac{(a+b-1)!}{(a-1)!(b-1)!} .
$$

This follows because the constant c must normalize the pdf to have total probability 1. There is only one such constant and it is given in the formula for the beta distribution.
A similar observation holds for normal distributions, exponential distributions, and so on.

2.2 Beta priors and posteriors for binomial random variables

Example 1. Suppose we have a bent coin with unknown probability θ of heads. We toss it 12 times and get 8 heads and 4 tails. Starting with a flat prior, show that the posterior pdf is a beta $(9,5)$ distribution.
answer: This is nearly identical to examples from the previous class. We'll call the data from all 12 tosses x_{1}. In the following table we call the leading constant factor in the posterior column c_{2}. Our simple observation will tell us that it has to be the constant factor from the beta pdf.
The data is 8 heads and 4 tails. Since this comes from a $\operatorname{binomial}(12, \theta)$ distribution, the likelihood $p\left(x_{1} \mid \theta\right)=\binom{12}{8} \theta^{8}(1-\theta)^{4}$. Thus the Bayesian update table is

hypothesis	prior	likelihood	Bayes numerator	posterior
θ	$1 \cdot d \theta$	$\binom{12}{8} \theta^{8}(1-\theta)^{4}$	$\binom{12}{8} \theta^{8}(1-\theta)^{4} d \theta$	$c_{2} \theta^{8}(1-\theta)^{4} d \theta$
total	1		$T=\binom{12}{8} \int_{0}^{1} \theta^{8}(1-\theta)^{4} d \theta$	1

Our simple observation above holds with $a=9$ and $b=5$. Therefore the posterior pdf

$$
f\left(\theta \mid x_{1}\right)=c_{2} \theta^{8}(1-\theta)^{4}
$$

follows a $\operatorname{beta}(9,5)$ distribution and the normalizing constant c_{2} must be

$$
c_{2}=\frac{13!}{8!4!} .
$$

Note: We explicitly included the binomial coefficient $\binom{12}{8}$ in the likelihood. We could just as easily have given it a name, say c_{1} and not bothered making its value explicit.

Example 2. Now suppose we toss the same coin again, getting n heads and m tails. Using the posterior pdf of the previous example as our new prior pdf, show that the new posterior pdf is that of a beta $(9+n, 5+m)$ distribution.
answer: It's all in the table. We'll call the data of these $n+m$ additional tosses x_{2}. This time we won't make the binomial coefficient explicit. Instead we'll just call it c_{3}. Whenever we need a new label we will simply use c with a new subscript.

hyp.	prior	likelihood	Bayes posterior	

Again our simple observation holds and therefore the posterior pdf

$$
f\left(\theta \mid x_{1}, x_{2}\right)=c_{4} \theta^{n+8}(1-\theta)^{m+4}
$$

follows a beta $(n+9, m+5)$ distribution.
Note: Flat beta. The beta $(1,1)$ distribution is the same as the uniform distribution on $[0,1]$, which we have also called the flat prior on θ. This follows by plugging $a=1$ and $b=1$ into the definition of the beta distribution, giving $f(\theta)=1$.

Summary: If the probability of heads is θ, the number of heads in $n+m$ tosses follows a $\operatorname{binomial}(n+m, \theta)$ distribution. We have seen that if the prior on θ is a beta distribution then so is the posterior; only the parameters a, b of the beta distribution change! We summarize precisely how they change in a table. We assume the data is n heads in $n+m$ tosses.

hypothesis	data	prior	likelihood	posterior
θ	$x=n$	$\operatorname{beta}(a, b)$	$\operatorname{binomial}(n+m, \theta)$	$\operatorname{beta}(a+n, b+m)$
θ	$x=n$	$c_{1} \theta^{a-1}(1-\theta)^{b-1} d \theta$	$c_{2} \theta^{n}(1-\theta)^{m}$	$c_{3} \theta^{a+n-1}(1-\theta)^{b+m-1} d \theta$

2.3 Conjugate priors

In the literature you'll see that the beta distribution is called a conjugate prior for the binomial distribution. This means that if the likelihood function is binomial, then a beta prior gives a beta posterior. In fact, the beta distribution is a conjugate prior for the Bernoulli and geometric distributions as well.

We will soon see another important example: the normal distribution is its own conjugate prior. In particular, if the likelihood function is normal with known variance, then a normal prior gives a normal posterior.
Conjugate priors are useful because they reduce Bayesian updating to modifying the parameters of the prior distribution (so-called hyperparameters) rather than computing integrals. We saw this for the beta distribution in the last table. For many more examples see: http://en.wikipedia.org/wiki/Conjugate_prior_distribution

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

