18.05 Problem Set 9, Spring 2014 Solutions

Problem 1. (10 pts.) (a) We have $x \sim \operatorname{binomial}(n, \theta)$, so $E(X)=n \theta$ and $\operatorname{Var}(X)=$ $n \theta(1-\theta)$. The rule-of-thumb variance is just $\frac{n}{4}$. So the distributions being plotted are
binomial $(250, \theta), \quad \mathrm{N}(250 \theta, 250 \theta(1-\theta)), \quad \mathrm{N}(250 \theta, 250 / 4)$.
Note, the whole range is from 0 to 250 , but we only plotted the parts where the graphs were not all 0 .

We notice that for each θ the blue dots lie very close to the red curve. So the $\mathrm{N}(n \theta, n \theta(1-\theta))$ distribution is quite close to the $\operatorname{binomial}(n, \theta)$ distribution for each of the values of θ considered. In fact, this is true for all θ by the Central Limit Theorem. For $\theta=0.5$ the rule-of-thumb gives the exact variance. For $\theta=0.3$ the rule-of-thumb approximation is very good: it has smaller peak and slightly fatter tail. For $\theta=0.1$ the rule-of-thumb approximation breaks down and is not very good.

In summary we can say two things about the rule-of-thumb approximation:

1. It is good for θ near 0.5 and breaks down for extreme values of θ. 2. Since the rule-ofthumb overestimates the variance (the rule-of-thumb graphs are shorter and wider) it gives us a confidence interval that is larger than is srictly necessary. That is a 95% rule-of-thumb interval actually has a greater than 95% confidence level.
(b) Using the rule-of-thumb approximation, we know that \bar{x} is approximately $\mathrm{N}(\theta, 1 / 4 n)$. For an 80% confidence interval, we have $\alpha=0.2$ so

$$
z_{\alpha / 2}=\operatorname{qnorm}(0.9,0,1)=1.2815
$$

So the 80% confidence interval for θ is given by

$$
\left[\bar{x}-\frac{z_{0.1}}{2 \sqrt{n}}, \bar{x}+\frac{z_{0.1}}{2 \sqrt{n}}\right]=[0.5195,0.6005]
$$

For the 95% confidence interval, we use the rule-of-thumb that $z_{0.025} \approx 2$. So the confidence interval is

$$
\left[\bar{x}-\frac{1}{\sqrt{n}}, \bar{x}+\frac{1}{\sqrt{n}}\right]=[0.497,0.623]
$$

It's okay to have used the exact value of $z_{0.025}$. This gives a confidence interval:

$$
\left[\bar{x}-\frac{1.96}{2 \sqrt{n}}, \bar{x}+\frac{1.96}{2 \sqrt{n}}\right]=[0.498,0.622]
$$

(c) With prior $\operatorname{Beta}(1,1)$, if observe x and then the posterior is $\operatorname{Beta}(x+1,250+1-x)$. In our case $x=140$. So, using R we get the 80% posterior probability interval:

$$
\begin{aligned}
\text { prob_interval } & =[q \operatorname{qbeta}(0.1,141,111), q \operatorname{qbeta}(0.9,141,111)] \\
& =[0.51937,0.5995]
\end{aligned}
$$

This is quite close to the 80% confidence interval. Though the two intervals have very different technical meanings, we see that they are consistent (and numerically close). Both give a type of estimate of θ.

Problem 2. (10 pts.) (a) We have $n=20$ and $\alpha=0.1$ so

$$
t_{\alpha / 2}=\mathrm{qt}(0.05,19)=1.7291 .
$$

Thus the $90 \% t$-confidence interval is given by

$$
\left[\bar{x}-t_{\alpha / 2} \cdot \frac{s}{\sqrt{n}}, \bar{x}+t_{\alpha / 2} \cdot \frac{s}{\sqrt{n}}\right]=[68.08993,71.01007]
$$

Given that the sample mean and variance are only reported to 2 decimal places the extra digits are a spurious precision. It is worth noting that to the given precision the 90% confidence interval is [68.08, 71.02]. (The problem did not ask you to do this.)
(b) We have

$$
z_{\alpha / 2}=\operatorname{qnorm}(0.05)=1.6448
$$

So the $90 \% z$-confidence interval is given by

$$
\left[\bar{x}-z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right]=[68.15839,70.94161]
$$

As in part (a) taking the precision of the mean into account we get the interval [68.16, 70.94].
(c) We need n such that $2 \cdot z_{0.05} \cdot \sigma / \sqrt{n}=1$. So $n=\left(2 \cdot z_{0.05} \cdot \sigma\right)^{2}=153.8$. Since you need a whole number of people the answer is $n=154$.
(d) We need to find n so that $2 \cdot t_{0.05} / \sqrt{n}=1$. Because the critical value $t_{0.05}$ depends on n the only way to find the right n is by systematically checking different values of n.

```
n = 157
t05 = qt (0.95,n-1) = 1.6547
width = (2*sqrt(s2)*t05/sqrt(n)) = 0.99736 (very close to 1).
```

(Our actual code used a 'for loop' to run through the values $n=130$ to $n=180$ and print the width to the screen for each n.)

We find $n=157$ is the first value of n where the width 90% interval is less than 1 . This is not guaranteed. In an actual experiment the value of s^{2} won't necessarily equal 14.26. If it happens to be smaller then then the $90 \% t$ confidence interval will have width less than 1 .

Problem 3. (10 pts.) (a) The sample mean is $\bar{x}=356$. Since $z_{0.025}=1.96, \sigma=3$ and $n=9$, the 95% confidence interval is

$$
\left[\bar{x}-z_{0.025} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{0.025} \cdot \frac{\sigma}{\sqrt{n}}\right]=[354.04,357.96]
$$

(b)

We have $z_{0.01}=$ qnorm(0.99) $=2.33$. So the 98% confidence interval is

$$
\left[\bar{x}-z_{0.01} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{0.01} \cdot \frac{\sigma}{\sqrt{n}}\right]=[353.67,358.33] .
$$

(c) The sample variance is

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\operatorname{var}\left(\left[\begin{array}{lllllllll}
352 & 351 & 361 & 353 & 352 & 358 & 360 & 358 & 359
\end{array}\right]\right)=15.5
$$

Since $n=9$ the number of degrees of freedom for the t-statistic is 8 .
Redo (a) : $t_{8,0.025}=\operatorname{qt}(0.975,8)=2.306$. So the 95% confidence interval is

$$
\left[\bar{x}-t_{8,0.025} \cdot \frac{s}{\sqrt{n}}, \bar{x}+t_{8,0.025} \cdot \frac{s}{\sqrt{n}}\right] \approx[352.97,359.03] .
$$

Redo $(\mathrm{b}): t_{8,0.01}=\mathrm{qt}(0.99,8)=2.896$. So the 98% confidence interval is

$$
\left[\bar{x}-t_{8,0.01} \cdot \frac{s}{\sqrt{n}}, \bar{x}+t_{8,0.01} \cdot \frac{s}{\sqrt{n}}\right] \approx[352.20,359.80] .
$$

These intervals are larger than the corresponding intervals from parts (a) and (b). The new uncertainly regarding the value of σ means we need larger intervals to achieve the same level of confidence. This is reflected in the fact that the t distribution has fatter tails than the normal distribution).

Problem 4. (10 pts.) (a) This is similar to problem 3c. We assume the data is normally distributed with unknown mean μ and variance σ^{2}. We have the number of data points $n=12$. Using Matlab we find

$$
\begin{aligned}
\text { data } & =[6.0,6.4,7.0,5.8,6.0,5.8,5.9,6.7,6.1,6.5,6.3,5.8] ; \\
\bar{x} & =\frac{\sum x_{i}}{n}=\operatorname{mean}(\text { data })=6.1917 \\
s^{2} & =\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\operatorname{var}(\text { data })=0.15356 \\
c_{0.025} & =\operatorname{qchisq}(0.975,11)=21.920 \\
c_{0.975} & =\operatorname{qchisq}(0.025,11)=3.8157
\end{aligned}
$$

So the 95% confidence interval is

$$
\frac{(n-1) \cdot s^{2}}{c_{0.025}}, \frac{(n-1) \cdot s^{2}}{c_{0.975}}=[0.077060,0.442683] .
$$

s^{2} is our point estimate for σ^{2} and the confidence interval is our range estimate with 95% confidence.
(b) We have assumed that the plasma cholesterol levels are independent and normally distributed. This might not be a good assumption because cholesterol for men and women might follow different distributions. We'd have to do further exploration to understand this.

Problem 5. (10 pts .) (a) We have $n=10$ and $s^{2}=4.2$ Assuming that the weights are normally distributed with mean $\mu=52$ and variance σ^{2}, we know that $\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{9}^{2}$. We have

$$
\begin{aligned}
& c_{0.025}=\operatorname{qchisq}(0.975,9)=19.023 \\
& c_{0.975}=\operatorname{qchisq}(0.025,9)=2.7004
\end{aligned}
$$

The 95% confidence interval for σ is given by

$$
\left[\sqrt{\frac{s^{2}(n-1)}{c_{0.975}}}, \sqrt{\frac{s^{2}(n-1)}{c_{0.025}}}\right]=[1.4096,3.7414]
$$

(b) In order to use a χ^{2} confidence interval we assumed that the weights of the packs of candy are independent and normally distributed with mean 52 and variance σ^{2}.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

