
18.05 Problem Set 6, Spring 2014 Solutions

Problem 1. (10 pts.) (a) Throughout this problem we will let x be the data of 140 heads
out of 250 tosses. We have 140/250 = .56. Computing the likelihoods:

250 250
p(x|H0) =

( )
(.5)250 p(x|H1) =

( )
(.56)140(.44)110

140 140

which yields Bayes factor

p(x|H0) (.5)250
=

p(x|H1)
= 0.16458,

(.56)140(.44)110

(Actually, we computed the log Bayes factor since it is numerically more stable. Then we
exponentiated to get the Bayes factor.)

Since we chose the probability 140/250 of H1 to exactly match the data it is not surprising
that the probability of the data given H1 is much greater than the probability given H0.
Said differently, the data will pull our prior towards one centered at 140/250.

(b) Here are the plots of the five priors. The vertical dashed red line is at θ = 0.5. The
R code is posted alongside these solutions.
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A priori I would want my prior centered at 0.5. This rules out Beta(30,70). Beta(500,500)
seems too narrow. Beta(1,1) doesn’t really match my experience with coins, but I might
go with it and just let the data speak for itself. Both Beta(10,10) and Beta(50,50) seem
plausible. Even if they’re wrong they aren’t so strong that they would cause us to ignore
the evidence in the data.

(c) The prior probability of a bias in favor of heads is P (θ > 1/2). Looking at the plots
of the prior pdf’s in part (b) we see that (i)-(iv) are symmetric about .5, therefore they
predict the probability of heads is 1/2. That is they are all unbiased. (v) has most of it’s
probability below .5. So it is strongly biased against heads. Thus, the ranking in order of
bias from least to greatest is (v) followed by a four-way tie between (i)-(iv).

(d) All of the prior pdf’s are beta distributions, so they have the form

f(θ) = c1θ
a−1(1− θ)b−1.
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For a fixed hypothesis θ the likelihood function (given the data x) is

250
p(x|θ) =

(
140

)
θ140(1− θ)110.

Thus the posterior pdf is

f(θ|x) = c θ140+a−1(1− θ)110+b
2

−1 ∼ beta(140 + a, 110 + b).

So the five posterior distributions (i)-(v) are beta(141, 111), beta(150, 120), beta(190, 160),
beta(640, 610), and beta(170, 180).

Here are the plots of the five posteriors.
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Each prior is centered on a value of θ. The sharpness of the peak is a measure of the prior
‘commitment’ to this value. So prior (iv) is strongly committed to θ = .5, but prior (ii) is
only weakly committed and (i) is essentially uncommitted. The effect of the data is to pull
the center of the prior towards the data mean of .56. That is, it averages the center of the
prior and the data mean. The stronger the prior belief the less the data pulls the center
towards .56. So prior (iv) is only moved a little and prior (i) is moved almost all the way to
.56. Priors (ii) and (iii) are intermediate. Prior (v) is centered at θ = .3. The data moves
the center a long way towards .56. But, since it starts so much farther from .56 than the
other priors, the posterior is still centered the farthest from .56.

(e) For each of the five posterior distributions, we compute p(θ ≥ 0.5|x) :

P(i)(θ > 0.5|x) = 1- pbeta(.5, 141,111) = 0.9710

P(ii)(θ > 0.5|x) = 1- pbeta(.5, 150,120) = 0.9664

P(iii)(θ > 0.5|x) = 1- pbeta(.5, 190,160) = 0.9459

P(iv)(θ > 0.5|x) = 1- pbeta(.5, 640,610) = 0.8020

P(v)(θ > 0.5|x) = 1- pbeta(.5, 170,180) = 0.2963

This is consistent with the plot in d), as the posterior computed from the uniform prior has
the most density past 0.5 while the posterior computed from prior (v) has the least.
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(f) Step 1. Since the intervals are small we can use the relation

probability ≈ density ·Δθ.

So
P(i)(H0|x) = P(i)(0.49 ≤ θ ≤ 0.51|x) ≈ ·f(i)(0.5|x) · .2

and
P(i)(H1|x)Pi(0.55 ≤ θ ≤ 0.57) ≈ ·f(i)(0.56) · .2.

So the the posterior odds (using prior (i)) of H1 versus H0 are approximately

P(i)(H1|x) f

P(i)(H0|x) ≈ (i)(0.56)

f(i)(0.5)
=

dbeta(.56,141,111)

dbeta(.5,141,111)
=

c(0.56)140(0.44)110

.
≈ 6.07599

c(0.5)140(0 5)110

By similar reasoning, the posterior odds (using prior (iv)) of H1 versus H0 is approximately
0.00437.

Problem 2. (10 pts.) Let A be the event that Alice is collecting tickets and B the event
that Bob is collecting tickets. Denoting our data as D, we have the likelihoods

1012+10+11+4+11e−50

P (D|A) =
12!10!11!4!11!

1512+10+11+4+11e−75

P (D|B) = .
12!10!11!4!11!

P (A)Moreover, we are given prior odds, O(A) = P (B) =
1 . Thus, our posterior odds are10

P (D
O(A|D) =

|A) 10
O(A) =

P (D|B)

(
15

)48

e25 · 1
25

10
≈ .408

Note that the Bayes factor is about 250.

Problem 3. (10 pts.) (a) We have a flat prior pdf f(θ) = 1. For a single data value x,
our likelihood function is:

f(x|θ) =
{
0 if θ < x
1 if xθ ≤ θ ≤ 1

Thus our table is

prior likelihood unnormalized posterior
hyp. f(θ) f(x|θ) posterior f(θ|x)
θ < x dθ 0 0

x ≤ θ ≤ 1 dθ 1 dθ c dθθ θ θ

Tot. 1 T 1

0

The normalizing constant c must make the total posterior probability 1, so

c

∫ 1 dθ

x θ
= 1 ⇒ c = − 1

.
ln(x)

Note that since x ≤ 1, we have c = −1/ ln(x) > 0.
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Here are plots for x = .2 (c = 0.621) and x = .5 (c = 1.443).
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(b) Notice that θ cannot be less than any one of x1, . . . , xn. So the likelihood function is
given by

f(x1, . . . , xn|θ) =
{
0 if θ < max x1, . . . , xn
1

{ }
ifθn max {x1, . . . , xn} ≤ θ ≤ 1.

Let xM = max {x1, . . . , xn}. So our table is

prior likelihood unnormalized posterior
hyp. f(θ) f(data|θ) posterior f(θ|data)

θ < xM dθ 0 0 0

xM ≤ θ ≤ 1 dθ 1
θn

dθ
θn

c
θn dθ

Tot. 1 T 1

The normalizing constant c must make the total posterior probability 1, so

c

∫ 1 dθ

xM
θn

= 1 ⇒ c =
n− 1

.
x1−n
M − 1

The posterior pdf depends only on n and xM , therefore the data (.1,.5) and (.5,.5) have the
same posteriors. Here are the plots of the posteriors for the given data.
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(c) We now have xM = 0.5 so from part (b) the posterior density is

0 i
f(θ|x1, . . . , x5) =

{
f θ < .5

c if
θ5

.5 ≤ θ ≤ 1,

where c = 4
.5−4−1

= 4 .15

Now, let x be amount by which Jane is late for the sixth class. The likelihood is

f(x|θ) =
{
0 if θ < x
1 if θθ ≥ x

We have the posterior predictive probability

f(x|x1, . . . , x5) =
∫

f(x|θ)f(θ|x1, . . . , x5) dθ

=

⎧∫ 1 1⎨
.5⎩ θ · 4

15θ5
dθ = − 4

75θ
−5

∣∣1
.5
= 124

75 if 0 ≤ x < .5

∫ 1
x

1
θ · 4

15θ5
dθ = − 4

75θ
−5

∣∣1
x
= 4 (x−5 − 1) if .575 ≤ x ≤ 1

Thus the posterior predictive probability that x ≤ 0.5 is

0.5 .5 124
P (x ≤ .5|x1, . . . , x5) =

∫
f(x

0
|x1, . . . , xn) dx =

∫
0 75

dx =
62

75
= 0.82667 .

(d) The graphs or the formula in part (a) show that f(θ|x) is decreasing for θ ≥ x, so the
MAP is when θ = x.

(e) Extra credit: 5 points
(i) From part (a) we have the posterior pdf f(θ|x). The conditional expectation is

E(θ|x) =
∫ 1 c

θf(θ|x) dθ =

∫
θ

x
·
θ
= c(1− x) = −1− x

ln(x)
.

(ii) After observing x, we know that θ ≥ x, and as a result the conditional expectation
E[θ|x] ≥ x. So the conditional expectation estimator is always at least as big as the MAP
estimator. However, the MAP estimator is precisely x, the amount by which Jane is late
on the first class. In this context, the MAP is not reasonable as it suggests that on the
first class, Jane arrived as late as possible and that in the future, she will arrive less than
x hours late.
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Problem 4. (10 pts.) (a) Leaving the scale factors as letters our table is

prior likelihood posterior
hyp. f(θ) ∼ N(5, 9) f(x|θ) ∼ N(θ, 4) f(θ|x)

2 2

θ c e−(θ 5)2/18 (6 θ)2/8

(
(θ

dθ c2e
− c exp

− 5) (6
1

− θ)− −
18

−
8

)

Tot. 1 1

All we need is some algebraic manipulations of the exponent in the posterior:

(θ − 5)2−
18

− (6− θ)2

8
= −1

2

(
θ2 − 12θ + 36

4
+

θ2 − 10θ + 25

9

)
1

= −
2

(
13θ2 − 148θ + 424

36

)

1
= −

2

(
(θ − 74/13)2

+ k
36/13

)

where k is a constant. Thus the posterior (
− 2(θ 74/13)

f(θ|x) ∝ exp −
2 · 36/13

)

This has the form of a pdf for N
(
74
13 ,

36
13

)
. QED

(b) We have μprior = 5, σ2
prior = 9, x = 6, σ2 = 4, n = 4 So we have

1
a =

9
, b = 1, a+ b =

10

9
⇒ μpost =

5/9 + 6 1
= 5.9, σ2

10/9 post = 10/9
= .9.
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After observing x1, . . . , x4, we see that the posterior mean is close to x and the posterior
variance is much smaller than the prior variance. The data has made us more certain about
the location of θ.

(c) As more data is received n increases, so b increases, so the mean of the posterior is
closer to the data mean and the variance of the posterior decreases. Since the variance goes
down, we gain more certainty about the true value of θ.

(d) With no new data we are given the prior f(θ) ∼ N(100, 152). For data x = score on
the IQ test we have the likelihood f(x|θ) ∼ N(θ, 102). Using the update formulas we have
μprior = 100, σ2

prior = 152, σ2 = 102, n = 1. So a = 1/225, b = 1/100 and

a 80
(i) Randall, x = μpost =

· 100 + b
80:

·
= 86.15

a+ b

a
(ii) Mary, x = 150: μpost =

· 100 + b · 150
= 134.62

a+ b

Regression towards the mean!

(e) Extra credit: 5 points. This is essentially the same manipulation as in part (a).
First suppose we have one data value x1 then

prior likelihood posterior
hyp. f(θ) ∼ N(μprior, σ

2
prior) f(x1|θ) ∼ N(θ, σ2) f(θ|x1)

2 2

θ c e−(θ−μprior)
2/2σ2

prior dθ c e(x θ)2/2σ2

(
(θ − μ )

1− c exp − prior (x1 )
1 2

2σ2

− θ

2σ2
prior

−
)

Tot. 1 1

All we need is some algebraic manipulations of the exponent in the posterior. Whenever
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we get a term not involving θ we just absorb it into the constant k1, k2 etc.

(θ − μ− prior)
2

2σ2
prior

− (x1 − θ)2

2σ2
= −1

2

(
θ2 − 2μpriorθ + μ2

prior

σ2
prior

+
θ2 − 2x1θ + x21

σ2

)

1
= −

2

(
(a+ b)θ2 − 2(aμprior + bx1)θ + k1

)
aμ

θ1
= −

2

(
− prior+bx1

a+b
+ k21

a+b

)

2aμ
θ prior+bx1

1 a+b
f(θ|x1) ∝ exp

⎛
−
2

(
−

1
a+b

) ⎞

2

Thus the posterior

⎜⎝ ⎟⎠
This has the form of a pdf for N

(
aμprior+bx1

a+b , 1 . This proves the formulas (1) when n = 1.a+b

The formulas when n > 1 are a simple consequence

)
of updating one data point at a time

using the formulas when n = 1.

Problem 5. (10 pts.) Censored data. We note that we assume that, given a particular
dice, the rolls are independent. Let x be the censored value on one roll. The Bayes factor
for x is

p(x 4-sided)
Bayes factor =

|
p(x|6-sided) =

{
3/4
5/6 = 9/10 if x = 0
1/4 = 3/2 if x = 11/6

Starting from the prior odds of 1, we multiply by the appropriate Bayes factor and get the
posterior odds after rolls 1-5 are

3

2
= 1.5,

27

20
= 1.35,

81

40
= 2.025,

243

80
= 3.0375,

729
= 4.5562

160

(b) In part (a) we saw the Bayes factor when x = 1 is 3/2. Since this is more than 1 it is
evidence in favor of the 4-sided die. When x = 0 the Bayes factor is 9/10, which is evidence
in favor of the 6-sided die.

We saw this in part (a) because after every value of 1 the odds for the 4-sided die went up
and after the value of 0 the odds went down.
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