
18.05 Problem Set 4, Spring 2014 Solutions

Problem 1. (10 pts.) (a)

x

P (X ≥ x) = 1− P (X < x) = 1−
∫

λe−λxdx = 1
0

− (1− e−λx) = e−λx.

(b) For t ≥ 0, we know that T ≥ t if and only if both X1 ≥ t and X2 ≥ t. So P (T ≥ t) =
P (X1 ≥ t,X2 ≥ t). Since X1 and X2 are independent,

P (X1 ≥ t,X2 ≥ t) = P (X1 ≥ t)P (X 2
2 ≥ t) = e− λt.

Thus, FT (t) = P (T ≤ t) = 1 − e−2λt. Differentiating with respect to t to get the pdf, we
find

fT (t) = FT
′ (t) = 2λe−2λt.

T is an exponential random variable with mean 1 .2λ

(c) Let X1, X2, and X3 be the lifetimes of bulbs B1, B2 and B3, respectively. Then we know
X1 ∼ exp(2), X2 ∼ exp(3), X3 ∼ exp(5). Let T = min(X1, X2, X3). Then T is the time to
the first failure of a bulb. Following the same argument as in (b), we have

P (T ≥ t) = P (X1 ≥ t)P (X2 ≥ t)P (X3 ≥ t) = e−10t.

Thus, the cdf of T is F (t) = 1− e−10tT and the pdf, fT (t) is given by

fT (t) = FT
′ (t) = 10e−10t

and we find that T ∼ exp(10). Therefore, E[T ] = 1 .10

Problem 2. (10 pts.) (a) We have
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F (x, y) = P (X ≤ x, Y ≤ y) =
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(b) The marginal pdf’s are:

1 12 x
fX(x) =

∫
f(x, y) dy =

0 7

(
x2 +

2

1 12 1 y

)
fY (y) =

∫
f(x, y) dx =

0 7

(
+

3 2

)
.
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The marginal cdf’s are:

12 x3 x2
FX(x) = F (x, 1) =

7

(
+

3 4

)
12 y y2

FY (y) = F (1, y) =
7

(
+

3 4

)
.

(c)

1 12 1 x 12 1 1 5
E(X) =

∫
xf dx =

0 7

∫
x
(
x2X(x) +

0 2

)
dx =

7

(
+ = 0.7143∫ 4 6

)
7
≈

1

E(X2) = x2
39

fX(x) dx = ≈ 0.5571.
0 70

Thus Var(X) = E(X2)− E(X)2 ≈ 0.0469 .

(d)

1 12 1 1 y 4
E(Y ) =

∫
yfY (y) dy =

∫
y

(
+ dy

0 7 3 2

)
=

0 7
≈ 0.5714

1 12 1 1 y 17
E(Y 2) =

∫
y2fY (y) =

0 7

∫
y2

0

(
+ dy = 0.4048

3 2

V

)
42
≈

ar(Y ) = E(Y 2)− E(Y )2 ≈ 0.0782
1 1 12 1 1 17

E(XY ) =

∫ ∫
xyf(x, y) dy dx =

∫ ∫
x3y + x2y2 dy dx = ≈ 0.4048

0 0 7 0 0 42

Cov(X,Y ) = E(XY )− E(X)E(Y ) ≈ −0.0034

Cov(X,Y )
Cor(X,Y ) = =

σXσY
−0.0561

Problem 3. (10 pts.) (a) Define

1
Xi =

{
if person i supports Erika

0 if person i does not support Erika

Then Xi ∼ Bern(0.5) and the number of people who prefer Erika is

S = X1 + · · ·+X400.

We know E(Xi) = 1/2 and Var(Xi) = 1/4. This implies E(S) = 200 and Var(S) = 100.
Thus the central limit theorem tells us that

S ≈ N(200, 100).

The problem asks for P (S > 210):

S
P (S > 210) = P

(
− 200 210

>
− 200

10 10

)
≈ P (Z > 1) ≈ 0.16 .
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(b) If we now let Yi = 1 if person i prefers one of Peter, Jon or Jerry and 0 otherwise, we have
Y1, . . . , Y400 independent Bern(0.3). So E(Yi) = µ = 0.3 and Var(Yi) = (0.3)(0.7) = 0.21. If
Y 400 = 1 (Y1 +400 · · ·+ Y400), the Central Limit Theorem tells us

Y n − µ (Y n − 0.3)
√

400

/
√ =

σ 400
√

0.21

is approximately standard normal. If Z is standard normal, then(
(0.25 0.3)

√
400

P (Y ≤ 0.25) ≈ P Z <
−√

0.21

)
≈ 0.0145.

Problem 4. (10 pts.)

Let S be the total rounding error for a day. The problems asks for

P (|S| > 100).

Let Xi be the rounding error (in cents) of the ith order. Then Xi takes values 2, 1, 0, 1, 2,
each with probability 1

− −
. We compute5

E(Xi) = µ = 0, Var(Xi) = σ2 = 2.

The total rounding error S = X1 + · · · + X1000. By the Central Limit Theorem, we know
that S ≈ N(0, 2000).

S 0 100 100
P (|S 100)

−| P (

(
| |≥ = √ ≥ √

)
≈ P

(
|Z| ≥ √

)
= 0.02534 .

2000 2000 2000

Extra credit 5 points Here’s my code.
r = c(0,-1,-2,2,1) # rounding error for 0, 1, 2, 3, 4 cents

ntrials = 10000

data = rep(0,1000)

for (j in 1:ntrials)

{
x = sample(r,1000,replace=TRUE) #rounding from 1000 orders

trial = sum(x) # total rounding error

data[j] = trial

}
mean(abs(data) > 100 ) # fraction of rounding errors > 100 or < -100

In three runs it gave 0.0269, 0.0265, 0.0276. This agrees nicely with the CLT estimate.

Problem 5. (10 pts.) From the table we compute the marginal probabilities

1 1
P (X = 1) = , P (Y = 1) = .

3 3

Since P (X = 1, Y = 1) = 1 and P (X = 1)P (Y = 1) = 1 , X and Y are not independent.18 9
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Problem 6. (10 pts.) Solution: (a) The marginal distributions allow us to determine the
joint distribution of X and Y in terms of c:

Y \X 1 -1

1 c .5− c .5

-1 .5− c c .5

.5 .5
We easily compute: E(X) = 0, E(Y ) = 0, Var(X) = 1, Var(Y ) = 1. So, computing
directly

E(XY ) = (1 · 1)c+ (−1 · 1)(.5− c) + (1 · −1)(.5− c) + (−1 · −1)c

= 4c− 1

Thus,

Cor(X,Y ) = E(XY )− E(X)E(Y ) = 4c− 1

Cor(X,Y )
Cov(X,Y ) = = 4c− 1.

σXσY

(b) Note that the correlation runs from −1 to 1 as c runs from 0 to .5.

We must have Cov(X,Y ) = 0 for X and Y to be independent. This only happens when
c = 1 . It is easy to check in this case that all four probabilities in the table are 0.5 and4
they are independent.

When c = 0 the correlation is -1, which means X and Y are fully correlated (sometimes
called fully anti-correlated). When c = 0.5 the correlation is 1.0 and X and Y are fully
correlated.

Problem 7. (10 pts.) (a) The joint probability density function is f(a, b) = 1 and the3600
joint cumulative density function is

F (a, b) =

∫ a

0

∫ b ab
f(s, t) ds dt =

0 3600

(b) Since A is uniformly distributed on [0, 60], P (A ≤ 30) = 1 .2

(c) i) P (A ≤ 15, 30 ≤ B ≤ 45) = P (A ≤ 15)P (30 ≤ B ≤ 45) = 0.0625

ii) The range of (A,B) is the square [0, 60]×[0, 60]. The event ‘Alice arrives before 12:15 and
Bob arrives between 12:30 and 12:45’ is represented by the solid blue rectangle. Since the
probability distribution is uniform the probability of the blue rectangle is just the fraction
of the entire square the it covers.
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B

A

(60, 60)

(60, 0)

(0, 60)

(0, 0) (0, 30)

(15, 45)

(d) The shaded area in the figure below corresponds to the event ‘A ≤ B + 5’. (Note:
if Alice arrives before Bob then she arrives less than 5 minutes after him.) That is, it
corresponds to all pairs of arrival times (a, b) such that a ≤ b + 5. P (A ≤ B + 5) is then
just the area of the green region divided by the area of the entire square. We find that the

552
area of the white region is . So

2

1
P (A ≤ B + 5) =

3600

(
3600− 552

2

)
= 0.5799 .

A
=
B

+
5

B

A

(0, 5)

(55, 60)
(60, 60)

(60, 0)

(0, 60)

(0, 0)

(e) Alice and Bob arrive within 15 minutes of each other is event

E = ‘B − 15 ≤ A ≤ B + 15′.

This is the blue shaded region in the figure below. We see that the area of each white
452

triangle is . So, the combined white area is 452 and
2

3600 45
P (E) =

− 2 7
= .

3600 16
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B

A

(60, 60)

(60, 0)

(0, 60)

(0, 0)

(45, 60)

(60, 45)

(15, 0)

(0, 15)

A > B + 15

B > A+ 15

A
=
B

+
15

B
=
A

+
15
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