
Exam Number 3 for 18.04, MIT (Fall 1999).

Due on the last day of classes, Fall 1999.

Rodolfo R. Rosales� Boris Schlittgeny Zhaohui Zhangz.

December 2, 1999.
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1 Instructions.

1. Penalties may/will result for failure to follow the rules below.

2. Do it alone. You can consult only with the lecturer and/or the recitation instructors.

3. You can use the textbook, your class notes, the hand outs and the problem set answers. Nothing

else. Be speci�c with the references (e.g.: "Using Theorem 87, p. 986 in the book") and explain

how the reference �ts into the answer. You cannot use the answers to the problems at the end of

the book (except for those assigned, where a solution was provided with the problem set answers).

4. There is no time limit, but a few hours should be enough.

5. Write the answers to each problem on separate pages, and PRINT your name and

problem being solved at the head of each page (e.g.: 18.04, J. Doe, Exam #3, Problem

#77, page 2 of 29.

6. Staple the whole exam.

7. In all your solutions show your reasoning, explaining carefully what you are doing. Use English, not

just mathematical symbols. You play dice with unjusti�ed steps. Please: no "chicken scratches"

or arrows on the side of the page leading from one piece of an argument to another and so on. If a

particular thing is illegible, write it again.

The answers MUST be readable; this means (in particular)

that they have to be written in a large enough font and with

a dark enough pen/pencil!

Put a box around your �nal answers (or use any other device you want, but make it so they can

be found easily).

Answers that do not satisfy these criteria will be ignored.

8. Start early. Do not wait till the night before it is due.

9. The problems are actually neither hard nor do they require much cumbersome calculation, if you

think about them carefully and know what you are doing and where you are going. If you �nd

yourself in the middle of a long messy answer, stop and think again about your strategy. It may not

be a good way (maybe not even a way) to solve the problem.

Warning: Present a solution only if you have some reasonably good idea of what is going on in a

problem. Do not just write something in the hope of getting some partial credit; partial credit will

be given when it is due, but NEGATIVE CREDIT will accrue for any gross error or similar (i.e.:

beware of writing nonsense!)
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2 Problems.

2.1 Problem 1999.3.1 (10 points).

Calculate the residue (at z = 0) of g(z) =
d

dz
f(z), where: f(z) =

1

z3
ecos(z) cos(z) +

1

Log(1 + z)
.

2.2 Problem 1999.3.2 (10 points).

Calculate the integral: I =

Z
1

�1

dx

(1 + x2) sin(x� i)
.

2.3 Problem 1999.3.3 (10 points).

Calculate the Laurent expansions, valid on: (a)
p
2 < jzj < 2,

(b) � < jz � i
p
2j < 2

p
2 (what is �?),

for f(z) =
1

2 + z2
+

1

2� z
.

2.4 Problem 1999.3.4 (15 points).

Calculate, for any k 6= 0 real, the integral: I = I(k) =

Z
1

�1

eikx

1 + x2
x dx.

2.5 Problem 1999.3.5 (15 points).

Calculate (for any �1 < � < � � 1) the integral: I = I(�; �) =

Z
1

0

x�

1 + x�
dx.

Here x� > 0 and x� > 0 for any x > 0.

2.6 Problem 1999.3.6 (10 points).

Let f(z) =
q
1� sin(z). (a) Find and classify the singularities and zeros of this function.

(b) Is this function entire? If so, show it; if not, explain why not.

2.7 Problem 1999.3.7 (15 points).

Show that all the roots of the equation z6 � 5z2 + 10 = 0 lie in the annulus 1 < jzj < 2.

2.8 Problem 1999.3.8 (15 points).

Find the �rst �ve terms in the Laurent expansion for coth(z) valid on 0 < jzj < �. What is �?

THE END.


