Summary

In summary, the procedure of sketching trajectories of the 2×2 linear homogeneous system $\mathbf{x}^{\prime}=A \mathbf{x}$, where A is a constant matrix, is the following.
Begin by finding the eigenvalues of A.

1. If they are real, distinct, and non-zero:
a) find the corresponding eigenvectors;
b) draw in the corresponding solutions whose trajectories are rays. Use the sign of the eigenvalue to determine the direction of motion as t increases; indicate it with an arrowhead on the ray;
c) draw in some nearby smooth curves, with arrowheads indicating the direction of motion:
(i) if the eigenvalues have opposite signs, this is easy;
(ii) if the eigenvalues have the same sign, determine which is the dominant term in the solution for $t \gg 1$ and $t \ll-1$, and use this to determine which rays the trajectories are tangent to, near the origin, and which rays they are parallel to, away from the origin. (Or use the node-sketching principle.)
2. If the eigenvalues are complex, $a \pm b i$, the trajectories will be
a) ellipses if $a=0$
b) spirals if $a \neq 0 ; \quad$ inward if $a<0, \quad$ outward if $a>0$.

In all cases, determine the direction of motion by using the system $\mathbf{x}^{\prime}=A \mathbf{x}$ to find one velocity vector.
3. The details in the other cases (eigenvalues repeated, or zero) will be left as exercises using the reasoning in this note.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

