
Sketching More General Linear Systems 

In the preceding section we sketched trajectories for some particular lin
ear systems. They were chosen to illustrate the different possible geometric 
pictures. Based on that experience, we can now describe how to sketch the 
general system 

x� = Ax, A = 2 × 2 constant matrix. 

The geometric picture is largely determined by the eigenvalues and eigen
vectors of A, so there are several cases. 

For the first group of cases, we suppose the eigenvalues λ1 and λ2 are 
real and distinct. 

Case 1. The λi have opposite signs: λ1 > 0, λ2 < 0 ; unstable saddle. 

Suppose the corresponding eigenvectors are �α1 and �α2, respectively. 
Then four solutions to the system are 

x = ±�α1eλ1t , x = ±�α2eλ2t . (1) 

How do the trajectories of these four solutions look? 

In figure 1 below, the four vectors ±�α1 and ±�α2 are drawn as origin 
vectors. In figure 2, the corresponding four trajectories are shown as solid 
lines, with the direction of motion as t increases shown by arrows on the 
lines. The reasoning behind this is the following. 

Look first at x = �α1eλ1t. We think of eλ1t as a scalar factor changing the 
length of x; that is as t increases from −∞ to ∞, this scalar factor increases 
from 0 to ∞, since λ1 > 0. The tip of this lengthening vector represents the 
trajectory of the solution x = �α1eλ1t, which is therefore a ray going out from 
the origin in the direction of the vector�α1. 

Similarly, the trajectory of x = −�α1eλ1t is a ray going out from the origin 
in the opposite direction: that of the vector −�α1. 

The trajectories of the other two solutions x = ±�α2eλ2t will be similar, 
except that since λ2 < 0, the scalar factor eλ2t decreases as t increases. Thus 
the solution vector will be shrinking as t increases. The trajectory traced 
out by its tip will be a ray having the direction of �α2 or −�α2, but traversed 
toward the origin as t increases, getting arbitrarily close but never reaching 
it in finite time. 



Sketching More General Linear Systems OCW 18.03SC


To complete the picture, we sketch some nearby trajectories. These will 
be smooth curves generally following the directions of the four rays de
scribed above. In example 1 in the previous note they were hyperbolas. In 
general they are not, but they look something like hyperbolas, and they do 
have the rays as asymptotes. They are the trajectories of the solutions 

x = c1�α1eλ1t + c2�α2eλ2t , (2) 

for different values of the constants c1 and c2. 

Figures 1 and 2. Trajectories for case 1: saddle 
Case 2. λ1 and λ2 are distinct and negative: say λ1 < λ2 < 0; asymptoti
cally stable (sink) node 

Formally, the solutions (1) are written the same way and we draw their 
trajectories just as before. The only difference is that now all four trajec
tories are represented by rays coming in towards the origin as t increases, 
since both of the λi are negative. The four trajectories are represented as 
solid lines in figure 3, on the next page. 

The trajectories of the other solutions (2) will be smooth curves which 
generally follow the four rays. In the corresponding example 2 from the 
previous note, they were parabolas; here too they will be parabola-like, but 
this does not tell us how to draw them, so a little more thought is needed. 
The parabolic curves will certainly come in to the origin as t increases, but 
tangent to which of the rays? Briefly, the answer is this: 

Node-sketching principle. Near the origin, the trajectories follow the ray 
attached to the λi nearer to zero; far from the origin, they follow (i.e. are 
roughly parallel to) the ray attached to the λi further from zero. 

You need not memorize the above. Instead learn the reasoning on which 
it is based, since this type of argument will be used over and over in science 
and engineering work having nothing to do with differential equations. 

Since we are assuming λ1 < λ2 < 0, it is λ2 which is closer to 0. We 
want to know the behavior of the solutions near the origin and far from the 
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origin. Since all solutions are approaching the origin, 
near the origin corresponds to large positive t (we write t � 1); and 
far from the origin corresponds to large negative t (written t � −1). 

As before, the general solution has the form 

x = c1�α1eλ1t + c2�α2eλ2t , λ1 < λ2 < 0. (3) 

If t � 1, then x is near the origin, since both terms in (3) are small. How
ever, the first term is negligible compared with the second: for since λ1 −
λ2 < 0, we have 

eλ1t


eλ2t = e(λ1−λ2)t ≈ 0, t � 1 . (4)


Thus if λ1 < λ2 < 0 and t � 1, we can neglect the first term of (3), getting 

x ∼ c2�α2eλ2t for t � 1 (x near the origin), 

which shows that x(t) follows the ray corresponding to the the eigenvalue 
λ2 closer to zero. 

Similarly, if t � −1, then x is far from the origin since both terms in (3) 
are large. This time the ratio in (4) is large, so that it is the first term in (3) 
that dominates the expression, which tells us that 

x ∼ c1�α1eλ1 t for t � −1 (x far from the origin). 

This explains the reasoning behind the node-sketching principle in this 
case. 

Some of the trajectories of the solutions (3) are sketched in dashed lines 
in figure 3, using the node-sketching principle, and assuming λ1 < λ2 < 0. 

Figures 3, 4 and 5. Trajectories for source and sink nodes 
Case 3. λ1 and λ2 are distinct and positive: say λ1 > λ2 > 0 unstable 
(source) node 
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The analysis is like the one we gave above. The direction of motion on 
the four rays coming from the origin is outwards, since the λi > 0. The 
node-sketching principle is still valid and the reasoning for it is like the 
reasoning in case 2. The resulting sketch looks like the one in fig. 5. 

Case 4. Eigenvalues are pure imaginary: λ = ±bi, b > 0 stable 
center 

Here the solutions to the linear system have the form 

x = c1 cos bt + c2 sin bt, c1, c2 constant vectors . (5) 

(There is no exponential factor since the real part of λ is zero.) Since every 
solution (5) is periodic, with period 2π/b, the moving point representing it 
retraces its path at intervals of 2π/b. The trajectories therefore are closed 
curves; ellipses, in fact; see fig. 7. 

Sketching the ellipse is a little troublesome, since the vectors ci do not 
have any simple relation to the major and minor axes of the ellipse. For this 
course, it will be enough if you determine whether the motion is clockwise 
or counterclockwise. As in example 4 in the previous note, this can be 
done by using the system x� = Ax to calculate a single velocity vector x� 

of the velocity field. From this the sense of motion can be determined by 
inspection. 

The word stable means that each trajectory stays for all time 
within some circle centered at the critical point. Asymptot
ically stable is a stronger requirement: each trajectory must 
approach the critical point (here, the origin) as t ∞.→ 

Case 5. The eigenvalues are complex, but not purely imaginary. There are 
two cases: 

a ± bi, a < 0, b > 0; asymptotically stable (sink) spiral; 
a ± bi, a > 0, b > 0; unstable (source) spiral. 

Here the solutions to the linear system have the form 

x = eat(c1 cos bt + c2 sin bt), c1, c2 constant vectors . (6) 

They look like the solutions (5), except for a scalar factor eat which either 

decreases towards 0 as t ∞ (a < 0), or→
increases towards ∞ as t ∞ (a > 0) .→ 
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Thus the point x travels in a trajectory which is like an ellipse, except that 
the distance from the origin is steadily shrinking or expanding. The result 
is a trajectory which does one of the following: 

spirals steadily towards the origin, (asymptotically stable spiral) : a < 0 
spirals steadily away from the origin. (unstable spiral); a > 0 

The exact shape of the spiral is not obvious and perhaps best left to com
puters. You should determine the direction of motion by calculating from 
the linear system x� = Ax a single velocity vector x� near the origin. Typical 
spirals are pictured (figs. 7, 8). 

Figures 6, 7 and 8. Trajectories centers and spirals 
Other cases. 

Repeated real eigenvalue λ = 0, defective: (incomplete: one independent 
eigenvector): 

defective node; unstable if λ > 0; asymptotically stable if λ < 0 (fig. 9). 

Repeated real eigenvalue λ = 0, complete (two independent eigenvectors): 
star node; unstable if λ > 0; asymptotically stable if λ > 0. (fig. 10). 

One eigenvalue λ = 0. (Picture left for exercises and problem sets.) 

Figure 9. Stable and unstable nodes Figures 10. Star nodes
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