## Part I Problems and Solutions

Problem 1: Give the general solution to the DE system $\mathbf{x}^{\prime}=\left[\begin{array}{cc}-2 & 1 \\ -1 & -4\end{array}\right] \mathbf{x}$ and also give its phase-plane picture (i.e its direction field graph together with a few typical solution curves).

Solution: Characteristic equation $\lambda^{2}+6 \lambda+9=(\lambda+3)^{2}=0 \rightarrow$ repeated root $\lambda=-3$. The single eigenvector $\mathbf{v}$ and a generalized eigenvector $\mathbf{w}$ such that $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}=\mathbf{v}$, and the scalar component functions $x_{1}(t), x_{2}(t)$ of the general solution $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ of the form $\mathbf{x}(t)=c_{1} \mathbf{v} e^{\lambda t}+c_{2}(\mathbf{v} t+\mathbf{w}) e^{\lambda t}$
of the given system $\mathbf{x}^{\prime}=\mathbf{A x}$ are as follows:
Eigenvector: $\mathbf{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
Generalized eigenvector: $\mathbf{w}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
Thus, $x_{1}(t)=\left(c_{1}+c_{2}+c_{2} t\right) e^{-3 t}$ and $x_{2}(t)=\left(-c_{1}-c_{2} t\right) e^{-3 t}$.


Problem 2: For each of the following linear systems, carry out the graphing program laid out in this session, that is:
(i) find the eigenvalues of the associated matrix and from this determine the geometric type of the critical point at the origin, and its stability;
(ii) if the eigenvalues are real, find the associated eigenvectors and sketch the corresponding trajectories, showing the direction of motion for increasing $t$; then draw some nearby trajectories;
(iii) if the eigenvalues are complex, obtain the direction of motion and the approximate shape of the spiral by sketching in a few vectors from the vector field defined by the system.
a) $x^{\prime}=2 x-3 y, y^{\prime}=x-2 y$
b) $x^{\prime}=2 x, y^{\prime}=3 x+y$
c) $x^{\prime}=-2 x-2 y, y^{\prime}=-x-3 y$
d) $x^{\prime}=x-2 y, y^{\prime}=x+y$
e) $x^{\prime}=x+y, y^{\prime}=-2 x-y$

Solution: Let $\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ throughout, and $M$ be such that $\vec{x}^{\prime}(t)=M x(t)$. Let $M$ have eigenvalues $\lambda_{1}, \lambda_{2}$, with corresponding eigenvectors $\vec{v}_{1}, \vec{v}_{2}$. The general solution is thus

$$
\vec{x}(t)=c_{1} \vec{v}_{1} e^{\lambda_{1} t}+c_{2} \vec{v}_{2} e^{\lambda_{2} t}
$$

a) $M=\left[\begin{array}{ll}2 & -3 \\ 1 & -2\end{array}\right]$, with eigenvalues $\pm 1$ and eigenvectors $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. The system has a critical point at $(0,0)$ which is a saddle point.
For $c_{1}=0$ and as $t \rightarrow \infty, \vec{x}(t)=c_{2} e^{-t}\left[\begin{array}{l}1 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Similarly, for $c_{2}=0$ and $t \rightarrow-\infty, \vec{x}(t) \rightarrow\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
Thus the behavior near the saddle point looks like

b) $M=\left[\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right]$, with eigenvalues 2,1 and eigenvectors $\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$. The system has an unstable node at $(0,0)$.
As $t \rightarrow-\infty$ all trajectories go to $\overrightarrow{0}$.
Thus the behavior near the node looks like


For $t \rightarrow-\infty, c_{2}\left[\begin{array}{l}0 \\ 1\end{array}\right] e^{t}$ is dominant term, so the solutions are near the $y$-axis. For $t \rightarrow \infty$, $c_{1}\left[\begin{array}{l}1 \\ 3\end{array}\right] e^{2} t$ dominates, so solutions are parallel to $\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
c) $M=\left[\begin{array}{ll}-2 & -2 \\ -1 & -3\end{array}\right]$, with eigenvalues $-4,-1$ and eigenvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1\end{array}\right]$. The system has an asymptotically unstable node at $(0,0)$. As $t \rightarrow \infty$, all trajectories go to $\overrightarrow{0}$. The behavior near the origin looks like:

For $t \rightarrow-\infty,\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{-4 t}$ dominates, so solutions are parallel to $\left[\begin{array}{l}1 \\ 1\end{array}\right]$; for
$t \rightarrow \infty,\left[\begin{array}{c}2 \\ -1\end{array}\right] e^{-t}$ dominates, so solutions come in to the origin asymptotic to the line with direction vector $\left[\begin{array}{c}2 \\ -1\end{array}\right]$.

d) $M=\left[\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right]$, eigenvalues $1 \pm i \sqrt{2}$. The system then has an unstable spiral around $(0,0)$.

Near $y=0, x^{\prime} \approx x$, so $x$ is increasing where the spiral cuts the positive $x$-axis. As $y$ increases, so does $e^{t}$, so the spiral is outwards from the origin.

e) $M=\left[\begin{array}{cc}1 & 1 \\ -2 & -1\end{array}\right]$. Eigenvalues are $\pm 1$, pure imaginary, so the system has a stable center. The curves are ellipses, since $\frac{d y}{d x}=\frac{-2 x-y}{x+y}$ which integrates easily after cross-multiplying

$$
\text { to } 2 x^{2}+2 x y+y^{2}=c .
$$

Direction of motion: For instance, at $(1,0)$ the vector field is $x^{\prime}=1$, $y^{\prime}=-2$, so motion is clockwise.


MIT OpenCourseWare
http://ocw.mit.edu

### 18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

