Part I Problems and Solutions

Problem 1: Give the general solution to the DE system $\mathbf{x}' = \begin{bmatrix} -2 & 1 \\ -1 & -4 \end{bmatrix} \mathbf{x}$ and also give its phase-plane picture (i.e its direction field graph together with a few typical solution curves).

Solution: Characteristic equation $\lambda^2 + 6\lambda + 9 = (\lambda + 3)^2 = 0 \rightarrow$ repeated root $\lambda = -3$. The single eigenvector \mathbf{v} and a generalized eigenvector \mathbf{w} such that $(\mathbf{A} - \lambda \mathbf{I})\mathbf{w} = \mathbf{v}$, and the scalar component functions $x_1(t), x_2(t)$ of the general solution $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ of the form $\mathbf{x}(t) = c_1 \mathbf{v} e^{\lambda t} + c_2 (\mathbf{v} t + \mathbf{w}) e^{\lambda t}$ of the given system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ are as follows: Eigenvector: $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ Generalized eigenvector: $\mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ Thus, $x_1(t) = (c_1 + c_2 + c_2 t) e^{-3t}$ and $x_2(t) = (-c_1 - c_2 t) e^{-3t}$.

Problem 2: For each of the following linear systems, carry out the graphing program laid out in this session, that is:

(i) find the eigenvalues of the associated matrix and from this determine the geometric type of the critical point at the origin, and its stability;

- (ii) if the eigenvalues are real, find the associated eigenvectors and sketch the corresponding trajectories, showing the direction of motion for increasing t; then draw some nearby trajectories;
- (iii) if the eigenvalues are complex, obtain the direction of motion and the approximate shape of the spiral by sketching in a few vectors from the vector field defined by the system.
- a) x' = 2x 3y, y' = x 2y
- b) x' = 2x, y' = 3x + y
- c) x' = -2x 2y, y' = -x 3y
- d) x' = x 2y, y' = x + y
- e) x' = x + y, y' = -2x y

Solution: Let $\vec{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ throughout, and *M* be such that $\vec{x}'(t) = Mx(t)$. Let *M* have eigenvalues λ_1, λ_2 , with corresponding eigenvectors \vec{v}_1, \vec{v}_2 . The general solution is thus

$$\vec{x}(t) = c_1 \vec{v}_1 e^{\lambda_1 t} + c_2 \vec{v}_2 e^{\lambda_2 t}$$

- a) $M = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix}$, with eigenvalues ± 1 and eigenvectors $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. The system has a critical point at (0,0) which is a saddle point.
 - For $c_1 = 0$ and as $t \to \infty$, $\vec{x}(t) = c_2 e^{-t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \to \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Similarly, for $c_2 = 0$ and $t \to -\infty$, $\vec{x}(t) \to \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Thus the behavior near the saddle point looks like

b) $M = \begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix}$, with eigenvalues 2, 1 and eigenvectors $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. The system has an unstable node at (0, 0).

As $t \to -\infty$ all trajectories go to $\vec{0}$.

Thus the behavior near the node looks like

For $t \to -\infty$, $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^t$ is dominant term, so the solutions are near the *y*-axis. For $t \to \infty$, $c_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} e^2 t$ dominates, so solutions are parallel to $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

c) $M = \begin{bmatrix} -2 & -2 \\ -1 & -3 \end{bmatrix}$, with eigenvalues -4, -1 and eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$. The system has an asymptotically unstable node at (0,0). As $t \to \infty$, all trajectories go to $\vec{0}$. The behavior near the origin looks like:

d) $M = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$, eigenvalues $1 \pm i\sqrt{2}$. The system then has an unstable spiral around (0,0).

Near y = 0, $x' \approx x$, so x is increasing where the spiral cuts the positive x-axis. As y increases, so does e^t , so the spiral is outwards from the origin.

e) $M = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}$. Eigenvalues are ± 1 , pure imaginary, so the system has a stable center. The curves are ellipses, since $\frac{dy}{dx} = \frac{-2x-y}{x+y}$ which integrates easily after cross-multiplying to $2x^2 + 2xy + y^2 = c$.

Direction of motion: For instance, at (1, 0) the vector field is x' = 1, y' = -2, so motion is clockwise.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.