Part I Problems

Problem 1: Give the general solution to the DE system $\mathbf{x}^{\prime}=\left[\begin{array}{cc}-2 & 1 \\ -1 & -4\end{array}\right] \mathbf{x}$ and also give its phase-plane picture (i.e its direction field graph together with a few typical solution curves).

Problem 2: For each of the following linear systems, carry out the graphing program laid out in this session, that is:
(i) find the eigenvalues of the associated matrix and from this determine the geometric type of the critical point at the origin, and its stability;
(ii) if the eigenvalues are real, find the associated eigenvectors and sketch the corresponding trajectories, showing the direction of motion for increasing t; then draw some nearby trajectories;
(iii) if the eigenvalues are complex, obtain the direction of motion and the approximate shape of the spiral by sketching in a few vectors from the vector field defined by the system.
a) $x^{\prime}=2 x-3 y, y^{\prime}=x-2 y$
b) $x^{\prime}=2 x, y^{\prime}=3 x+y$
c) $x^{\prime}=-2 x-2 y, y^{\prime}=-x-3 y$
d) $x^{\prime}=x-2 y, y^{\prime}=x+y$
e) $x^{\prime}=x+y, y^{\prime}=-2 x-y$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

