Pset 10 Part I

Problem 1: Find the critical points of the non-linear autonomous system

$$
\begin{aligned}
x^{\prime} & =1-x+y \\
y^{\prime} & =y+2 x^{2}
\end{aligned}
$$

Solution: Critical points occur where $1-x+y=0$ and $y+2 x^{2}=0$ Substituting the first equation rewritten as $y=x-1$ into the second $y+2 x^{2}=0$ we get

$$
0=x-1+2 x^{2} \Rightarrow x=\frac{1}{2} \text { or } x=-1
$$

Then $x=\frac{1}{2} \Rightarrow y=-\frac{1}{2}$, and $x=-1 \Rightarrow y=-2$.
Thus, the critical points are $\left(\frac{1}{2},-\frac{1}{2}\right)$ and $(-1,-2)$.

Problem 2: Write as equivalent first-order system and find the critical points:

$$
x^{\prime \prime}-x^{\prime}+1-x^{2}=0
$$

Solution: Let $y=x^{\prime}$, then $y^{\prime}=x^{\prime \prime}=x^{\prime}-1+x^{2}$. So the equivalent 2×2 autonomous system is then

$$
\begin{aligned}
& x^{\prime}=y \\
& y^{\prime}=y-1+x^{2}
\end{aligned}
$$

Critical points occur when $y=0$ and $y-1+x^{2}=0 \Rightarrow y=0$ and $x^{2}=1$.
So, the critical points are $(1,0)$ and $(-1,0)$.

Problem 3: In general, what can you say about the relation between the trajectories and the critical points of the system on the left below, and those of the two systems on the right?
$x^{\prime}=f(x, y)$
a) $x^{\prime}=-f(x, y)$
b) $x^{\prime}=g(x, y)$
$y^{\prime}=g(x, y)$
$y^{\prime}=-g(x, y)$
$y^{\prime}=-f(x, y)$

Solution: (a) For this system the tangent vector $(-f(x, y),-g(x, y))$ to a trajectory is equal in magnitude but opposite in direction to the tangent vector $(f(x, y), g(x, y))$ to the original system. So the trajectory paths are the same but are traversed in the opposite direction.

The left hand figure is the original system $x^{\prime}=.6 x+y, y^{\prime}=-x$.
The right hand figure is the reversed system $x^{\prime}=-.6 x-y, y^{\prime}=x$.
The critical points are the same for both systems, they occur at $f(x, y)=0$ and $g(x, y)=0$.
(b) For this system the tangent vector $(g(x, y),-f(x, y))$ to a trajectory is perpendicular to the tangent vector $(f(x, y), g(x, y))$ to the original system. So the solutions to (b) are the orthogonal trajectories to the original system.

The left hand figure is the original system $x^{\prime}=.6 x+y, y^{\prime}=-1.5 x$.
The right hand figure is the orthogonal system $x^{\prime}=-1.5 y, y^{\prime}=.6 x+y$.
The critical points occur at $g(x, y)=0$ and $-f(x, y)=0$, i.e. they are the same as for the original system.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

