Structural Stability for Non-linear Systems

In the preceding note we discussed the structural stability of a linear system. How does it apply to non-linear systems?

Suppose our non-linear system has a critical point at P, and we want to study its trajectories near P by linearizing the system at P.

This linearization is only an approximation to the original system, so if it turns out to be a borderline case, i.e., one sensitive to the exact value of the coefficients, the trajectories near P of the original system can look like any of the types obtainable by slightly changing the coefficients of the linearization.

It could also look like a combination of types. For instance, if the linearized system had a critical line (i.e., one eigenvalue zero), the original system could have a sink node on one half of the critical line, and an unstable saddle on the other half. (This actually occurs.)

In other words, the method of linearization to analyze a non-linear system near a critical point doesn't fail entirely, but we don't end up with a definite picture of the non-linear system near P; we only get a list of possibilities. In general one has to rely on computation or more powerful analytic tools to get a clearer answer. The first thing to try is a computer picture of the non-linear system, which often will give the answer.

Example. $\quad x^{\prime}=y-x^{2}, \quad y^{\prime}=-x+y^{2}$
Jacobian: $\quad J(x, y)=\left(\begin{array}{cc}-2 x & 1 \\ -1 & 2 y\end{array}\right)$
Crititcal points: $y-x^{2}=0 \Rightarrow y=x^{2}$
$-x+y^{2}=0 \Rightarrow-x+x^{4}=0 \Rightarrow x=0,1$.
$\Rightarrow(0,0)$ and $(1,1)$ are the critical points.
$J(1,1)=\left(\begin{array}{ll}-2 & 1 \\ -1 & 2\end{array}\right):$
characteristic equation: $\lambda^{2}-3=0 \Rightarrow \lambda=$ $\pm \sqrt{3} \Rightarrow$ linearized system has a saddle.

This is structurally stable \Rightarrow the nonlinear system has a saddle at $(1,1)$.
$J(0,0)=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$: eigenvalues $= \pm i \Rightarrow$ a linearized center.
This is not structurally stable. The nonlinear system could be any one of a
center, spiral out or spiral in. Using a computer program it appears that $(0,0)$ is in fact a center. (This can be proven using more advanced methods.)

We can show the trajectories near $(0,0)$ are not spirals by exploiting the symmetry of the picture. First note, if $(x(t), y(t)$ is a solution then so is ($y(-t), x(-t)$. That is, the trajectory is symmetric in the line $x=y$. This implies it can't be a spiral. Since the only other choice choice is that the critical point $(0,0)$ is a center, the trajectories must be closed.

The following two examples show that a linearized center might also be a spiral in or a spiral out in the nonlinear system.
Example a. $\quad x^{\prime}=y, y^{\prime}=-x-y^{3}$.
Example b. $\quad x^{\prime}=y, y^{\prime}=-x+y^{3}$.
In both examples the only critical point is $(0,0)$.
$J(0,0)=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right) \Rightarrow$ linearized center. This is not structurally stable.
In example a the critical point turns out to be a spiral sink. In example b it is a spiral source.

Below are computer-generated pictures. Because the y^{3} term causes the spiral to have a lot of turns we 'improved' the pictures by using the power 1.1 instead.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

