The Borderline Geometric Types

All the other possibilities for the linear system (??) we call borderline types. We will show now that none of them is structurally stable; we begin with the center.

Eigenvalues pure imaginary. Once again we use the eigenvalue with the positive imaginary part: $\mathfrak{l}=0+s i, s>0$. It corresponds to a center: the trajectories are a family of concentric ellipses, centered at the origin. If the coefficients a, b, c, d are changed a little, the eigenvalue $0+$ si changes a little to $r^{\prime}+s^{\prime} i$, where $r^{\prime} \approx 0, s^{\prime} \approx s$, and there are three possibilities for the new eigenvalue:

$$
\begin{array}{lrrr}
0+s i \rightarrow r^{\prime}+s^{\prime} i: & r^{\prime}>0 & r^{\prime}<0 & r^{\prime}=0 \\
s>0 & s^{\prime}>0 & s^{\prime}>0 & s^{\prime}>0 \\
\text { center } & \text { source spiral } & \text { sink spiral } & \text { center }
\end{array}
$$

Correspondingly, there are three possibilities for how the geometric picture of the trajectories can change:

Eigenvalues real; one eigenvalue zero. Here $ł_{1}=0$, and $ł_{2}>0$ or $ł_{2}<0$. The general solution to the system has the form (α_{1}, α_{2} are the eigenvectors)

$$
\mathbf{x}=c_{1} \alpha_{1}+c_{2} \alpha_{2} e^{\mathrm{t}_{2} t} .
$$

If $\mathfrak{l}_{2}<0$, the geometric picture of its trajectories shows a line of critical points (constant solutions, corresponding to $c_{2}=0$), with all other trajectories being parallel lines ending up (for $t=\infty$) at one of the critical points, as shown below.

We continue to assume $ł_{2}<0$. As the coefficients of the system change a little, the two eigenvalues change a little also; there are three possibilities,
since the eigenvalue $\lambda=0$ can become positive, negative, or stay zero:
$\mathrm{t}_{1}=0 \rightarrow \mathrm{l}_{1}^{\prime}:$
$\mathrm{t}_{2}<0 \rightarrow \mathrm{ł}_{2}^{\prime}$: critical line
$\mathrm{f}_{1}^{\prime}>0$
$\mathrm{r}_{2}^{\prime}<0$
unstable saddle
$\mathrm{l}_{1}^{\prime}=0 \quad \mathrm{t}_{1}<0$
$t_{2}^{\prime}<0$
critical line
$\mathrm{r}_{2}^{\prime}<0$ sink node

Here are the corresponding pictures. (The pictures would look the same if we assumed $ł_{2}>0$, but the arrows on the trajectories would be reversed.)

One repeated real eigenvalue. Finally, we consider the case where $ł_{1}=$ $ł_{2}$. Here there are a number of possibilities, depending on whether $ł_{1}$ is positive or negative, and whether the repeated eigenvalue is complete (i.e., has two independent eigenvectors), or defective (i.e., incomplete: only one eigenvector). Let us assume that $\mathfrak{l}_{1}<0$. We vary the coefficients of the system a little. By the same reasoning as before, the eigenvalues change a little, and by the same reasoning as before, we get as the main possibilities (omitting this time the one where the changed eigenvalue is still repeated):

$$
\begin{aligned}
& \mathrm{l}_{1}<0 \quad \rightarrow \quad \mathrm{r}_{1}^{\prime}<0 \quad r+s i \\
& \mathrm{l}_{2}<0 \quad \rightarrow \quad \mathrm{Y}_{2}^{\prime}<0 \quad r-s i \\
& \mathrm{l}_{1}=\mathrm{l}_{2} \quad \mathrm{l}_{1}^{\prime} \neq \mathrm{l}_{2}^{\prime} \quad r \approx \mathrm{l}_{1}, \mathrm{~s} \approx 0, \\
& \text { sink node sink node sink spiral }
\end{aligned}
$$

Typical corresponding pictures for the complete case and the defective (incomplete) case are (the last one is left for you to experiment with on the computer screen)

complete: star node
incomplete: defective node

Remarks. Each of these three cases-one eigenvalue zero, pure imaginary eigenvalues, repeated real eigenvalue-has to be looked on as a borderline linear system: altering the coefficients slightly can give it an entirely different geometric type, and in the first two cases, possibly alter its stability as well.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

