## 18.03SC Practice Problems 25

## Step and delta responses

## Solution suggestions

**1.** Find the unit step and unit impulse responses for the operator 2D + I, and graph them. The unit step response h = h(t) is the continuous solution that is zero for t < 0, and is a solution of

$$2\dot{x} + x = 1$$
 for  $t > 0$ . (1)

This equation has particular solution  $x_p = 1$ . The homogeneous system  $2\dot{x} + x = 0$  has general solution  $ce^{-t/2}$ , so the general solution of (1) is  $x = 1 + ce^{-t/2}$ .

Because there is no impulse at t = 0 the pre and post-initial conditions are the same, i.e.  $x(0^-) = x(0^+) = 0$ . We need to choose the constant c to fit the post-initial condition:  $x(0^+) = 1 + c = 0$ . Thus, c = -1 and the unit step response h is

$$h(t) = \left(1 - e^{-t/2}\right)u(t).$$

The unit impulse response w = w(t) is the solution that is zero for x < 0, a solution of  $2\dot{x} + x = 0$  for x > 0, and satisfies  $x(0^+) = 1/a_1 = 1/2$ , where  $a_1$  is the coefficient of  $\dot{x}$ . Or, alternatively, but equivalently, the unit impulse response is the derivative of the unit step response, so, using the product rule

$$w(t) = h'(t) = \frac{1}{2}e^{-t/2}u(t) + \left(1 - e^{-t/2}\right)\delta(t) = \frac{1}{2}e^{-t/2}u(t)$$

The term  $(1 - e^{-t/2})\delta(t) = 0$  because at t = 0 the coefficient of  $\delta(t)$  is 0. The graphs of both are given below.



Figure 1: The unit step response h(t) and unit impulse response w(t) for 2D + I.

**2.** Find the unit impulse response for the operator  $D^2 + 2D$ , and graph it.

The unit impulse response for this operator is the function w(t) that is zero for t < 0 and satisfies the equation

$$\ddot{x} + 2\dot{x} = 0$$

for t > 0 with post initial conditions  $x(0^+) = 0$  and  $\dot{x}(0^+) = 1/1 = 1$ , since the operator is of order 2 and has leading coefficient 1.

By examining the characteristic polynomial, we see that homogeneous solutions have the form  $c_1e^{-2t} + c_2$ .

Now we use the post initial conditions to find the right constants  $c_1$  and  $c_2$ . From the condition on the function itself,  $c_1 + c_2 = 0$ , and, from the condition on the first derivative,  $-2c_1 = 1$ . Thus,  $c_1 = -1/2$ ,  $c_2 = -c_1 = 1/2$ , and the unit impulse response is

$$w(t) = \frac{1}{2} (1 - e^{-2t}) u(t).$$

The graph of w(t) is given below.



Figure 2: The unit impulse response w(t) for  $D^2 + 2D$ .

**3.** From your answer to **2.**, find the solution to  $\ddot{x} + 2\dot{x} = 3\delta(t-1)$  with rest initial conditions.

Using time invariance, we find that a solution to  $\ddot{x} + 2\dot{x} = 3\delta(t-1)$  is

$$x = 3w(t-1) = \frac{3}{2} \left(1 - e^{2-2t}\right) u(t-1)$$

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.