18.03SC Practice Problems 25

Step and delta responses

Solution suggestions

1. Find the unit step and unit impulse responses for the operator $2 D+I$, and graph them.

The unit step response $h=h(t)$ is the continuous solution that is zero for $t<0$, and is a solution of

$$
\begin{equation*}
2 \dot{x}+x=1 \quad \text { for } t>0 \tag{1}
\end{equation*}
$$

This equation has particular solution $x_{p}=1$. The homogeneous system $2 \dot{x}+x=0$ has general solution $c e^{-t / 2}$, so the general solution of (1) is $x=1+c e^{-t / 2}$.
Because there is no impulse at $t=0$ the pre and post-initial conditions are the same, i.e. $x\left(0^{-}\right)=x\left(0^{+}\right)=0$. We need to choose the constant c to fit the postinitial condition: $x\left(0^{+}\right)=1+c=0$. Thus, $c=-1$ and the unit step response h is

$$
h(t)=\left(1-e^{-t / 2}\right) u(t)
$$

The unit impulse response $w=w(t)$ is the solution that is zero for $x<0$, a solution of $2 \dot{x}+x=0$ for $x>0$, and satisfies $x\left(0^{+}\right)=1 / a_{1}=1 / 2$, where a_{1} is the coefficient of \dot{x}. Or, alternatively, but equivalently, the unit impulse response is the derivative of the unit step response, so, using the product rule

$$
w(t)=h^{\prime}(t)=\frac{1}{2} e^{-t / 2} u(t)+\left(1-e^{-t / 2}\right) \delta(t)=\frac{1}{2} e^{-t / 2} u(t)
$$

The term $\left(1-e^{-t / 2}\right) \delta(t)=0$ because at $t=0$ the coefficient of $\delta(t)$ is 0 . The graphs of both are given below.

Figure 1: The unit step response $h(t)$ and unit impulse response $w(t)$ for $2 D+I$.
2. Find the unit impulse response for the operator $D^{2}+2 D$, and graph it.

The unit impulse response for this operator is the function $w(t)$ that is zero for $t<0$ and satisfies the equation

$$
\ddot{x}+2 \dot{x}=0
$$

for $t>0$ with post initial conditions $x\left(0^{+}\right)=0$ and $\dot{x}\left(0^{+}\right)=1 / 1=1$, since the operator is of order 2 and has leading coefficient 1.
By examining the characteristic polynomial, we see that homogeneous solutions have the form $c_{1} e^{-2 t}+c_{2}$.
Now we use the post initial conditions to find the right constants c_{1} and c_{2}. From the condition on the function itself, $c_{1}+c_{2}=0$, and, from the condition on the first derivative, $-2 c_{1}=1$. Thus, $c_{1}=-1 / 2, c_{2}=-c_{1}=1 / 2$, and the unit impulse response is

$$
w(t)=\frac{1}{2}\left(1-e^{-2 t}\right) u(t) .
$$

The graph of $w(t)$ is given below.

Figure 2: The unit impulse response $w(t)$ for $D^{2}+2 D$.
3. From your answer to 2., find the solution to $\ddot{x}+2 \dot{x}=3 \delta(t-1)$ with rest initial conditions.
Using time invariance, we find that a solution to $\ddot{x}+2 \dot{x}=3 \delta(t-1)$ is

$$
x=3 w(t-1)=\frac{3}{2}\left(1-e^{2-2 t}\right) u(t-1) .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

