18.03SC Practice Problems 24

Step and delta functions

Solution suggestions

1. Let $Q(t)= \begin{cases}0 & \text { for } t<1 \\ 2 t-2 & \text { for } 1<t<2 \\ 2 t-1 & \text { for } 2<t<3 \\ 5 & \text { for } 3<t\end{cases}$
(a) Sketch a graph of this function. Is it piecewise smooth?

The function $Q(t)$ is made up of finitely many nice (differentiable) functions, and so, yes, it is piecewise smooth. The function is graphed in Figure 1 below.
(b) Find the generalized derivative $q(t)=Q^{\prime}(t)$, and sketch it.

We can graph the derivative $q(t)=Q^{\prime}(t)$ piece by piece, as in Figure 2 on the next page. The derivative has jumps at $t=1$ and $t=3$, where the original function has corners, and there is a delta function of magnitude +1 at $t=2$, where $Q(t)$ has a jump discontinuity of height +1 .
We can also find this derivative algebraically. First we write $Q(t)$ as a generalized function.

$$
Q(t)=(2 t-2) u(t-1)+u(t-2)+(5-2 t+1) u(t-3),
$$

and then take the (generalized) derivative and use the product rule to obtain

$$
\begin{aligned}
q(t) & =Q^{\prime}(t) \\
& =2 u(t-1)+(2-2) \delta(t-1)+\delta(t-2)+(-2) u(t-3)+(5-2 * 3+1) \delta(t-3) \\
& =2(u(t-1)-u(t-3))+\delta(t-2) .
\end{aligned}
$$

This matches the derivative we found graphically.

Figure 1: The piecewise-defined function $Q(t)$

Figure 2: Its generalized derivative $q(t)$
(c) Describe a scenario which might be modeled by the equation $\dot{x}+k x=q(t)$ (your choice of k) with rest initial conditions.
Here is a possible scenario for $\dot{x}+k x=q(t)$: The variable we are modeling, x, describes the balance of a bank account (measured in, say, thousands of dollars) which grows over time t (measured in, say, years) through interest at a rate $-k$ (for the DE to model exponential growth we have $k<0$). The driving function $q=q(t)$ represents the rate at which additional deposits are made into the savings account. Before time $t=1$, the account balance is zero. Between time $t=1$ and time $t=3$, the owner of the account has a job and steadily puts in 2 thousand dollars a year into the bank account - say, by making monthly or weekly deposits. (We are using a continuous approximation here and assuming the contributions are made at a constant rate.) At time $t=2$, the owner wins a lottery and makes a one-time deposit of a thousand dollars.
(d) Describe a scenario which might be modeled by the equation $2 \ddot{x}+4 \dot{x}+4 x=q(t)$ with rest initial conditions.
Here is a possible scenario for $2 \ddot{x}+4 \dot{x}+4 x=q(t)$: The system $2 \ddot{x}+4 \dot{x}+4 x$ describes a mass-spring-dashpot system with constants $m=2, b=4, k=4$, driven directly by the external force $q(t)$. Before time $t=1$, the force is zero, the spring and the dashpot are relaxed and the mass is still. Between time $t=1$ and time $t=3$, the force is steadily at 2 units. At time $t=2$, an additional impulse of one unit hits the system through the driving force.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

