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IVP’s: Longer Examples 

The fish population in a lake is not reproducing fast enough and the 
population is decaying exponentially with decay rate k. A program is 
started to stock the lake with fish. Three different scenarios are discussed 
below. 

Example 1. A program is started to stock the lake with fish at a constant 
rate of r units of fish/year. Unfortunately, after 1/2 year the funding is cut 
and the program ends. Model this situation and solve the resulting DE for 
the fish population as a function of time. 

Solution. Let x(t) be the fish population and let A = x(0−) be the initial 
population. Exponential decay means the population is modeled by 

. 
x + kx = f (t), x(0−) = A (1) 

where f (t) is the rate fish are being added to the lake. In this case 

r for 0 < t < 1/2 
f (t) = 

0 for 1/2 < t. 

First, write f in ’u-format’: f (t) = r(1 − u(t − 1/2)). 
Next, take the Laplace transform and solve for X(s). 

F(s) = L( f )(s) = 
r
s 
− 

r
s 

e−s/2. 
r

sX − x(0−) + kX = F(s) (s + k)X − A = (1 − e−s/2)⇒ ⇒ 
s 

A r ⇒ X(s) = 
s + k 

+ 
s(s + k)

(1 − e−s/2). 

To find x(t) we temporarily ignore the factor of e−s/2 and take Laplace in
verse of what’s left. (using partial fractions). 

A r r L−1 
s + k 

= Ae−kt , L−1 
s(s + k)

= 
k 
(1 − e−kt). 

The t-translation formula says 

re−s/2 
L−1 

s(s + k)
= u(t − 1/2) 

k
r 
(1 − e−k(t−1/2)). 
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Putting it all together we get (in u and cases format). 

r r
Ae−kt (1 − e−kt) − u(t − 1/2) (1 − e−k(t−1/2))x(t)
 =
 +


k
 k


Ae−kt + k
r (1 − e−kt) for 0 < t < 1/2 

= 
Ae−kt − k

r (e−kt + e−k(t−1/2)) for 1/2 < t. 

Example 2. (Periodic on/off) The program is refunded and the have 
enough money to stock at a constant rate of r for the first half of each year. 
Find x(t) in this case. 

Solution. All that’s changed from example 1 is the input function f (t). We 
write it in cases-format and translate that to u-format so we can take the 
Laplace transform. ⎧⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩


r for 0 < t < 1/2

0 for 1/2 < t < 1

r for 0 < t < 3/2
f (t)
 =


0 for 3/2 < t < 2 
· · · 

1 3 
r(1 − u(t −
 ) + u(t − 1) − u(t −
 ) + . . .)
=


2
 2


The computations from here are essentially the same as in the previous ex

ample.

L( f ) = r (1 − e−s/2 + e−s − e−3s/2 + . . .)
s


s+
A

k + (1 − e−s/2 + e−s
rX =
 − . . .)
s(s+k)⇒


⇒ x(t) = Ae−kt + k
r (1 − e−kt) − u(t − 1/2)(1 − e−k(t−1/2)) + . . . 

⇒
 x(t) =


⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


Ae−kt + k
r − k

r e−kt for 0 < t < 1 
2 

rAe−kt − k (e
−kt − e−k(t−1/2)) for 1

2 < t < 1 

· · · 
Ae−kt + k

r − k
r (e−kt − e−k(t−1/2) + . . . + e−k(t−n)) for n < t < n + 1 

Ae−kt − k
r (e−kt − e−k(t−1/2) + . . . − e−k(t−n−1/2)) for n + 1

2 < t < n + 1 

· · · 

2 

2 
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Factoring out e−kt gives: 

x(t) = 
Ae−kt + k

r − k
r e−kt(1 − ek/2 + ek − e3k/2 + . . . + enk) for n < t < n + 1/2 

Ae−kt − k
r e−kt(1 − ek/2 + ek − . . . − ek(n+1/2)) for n + 1/2 < t < n + 1. 

Note that the constant term r/k is only present during periods of stocking. 

Example 3. (Impulse train) The answer to the previous example is a little 
hard to read. We know from experience that impulsive input usually leads 
to simpler output. In this scenario suppose that once a year r/2 units of 
fish are dumped all at once into the lake. Find x(t) in this case. 

Solution. Once again, all that’s changed from example 1 is the input func
tion f (t). The IVP is still given by equation (1). 

r
f (t) = (δ(t) + δ(t − 1) + δ(t − 2) + δ(t − 3) + . . .).

2 
This is called an impulse train. Its Laplace transform is easy to find. 

F(s) = 
r 
(1 + e−s + e−2s + e−3s + . . .).

2 
One nice thing about delta functions is that they don’t introduce any new 
terms into the partial fractions part of the problem. 

sX(s) − x(0−) + kX(s) = 
r 
(1 + e−s + e−2s + e−3s + . . .).

2 

X(s) = 
A 

+ 
r 

(1 + e−s + e−2s + e−3s + . . .).⇒ 
s + k 2(s + k) 

Laplace inverse is easy: 

L−1 1 
= e−kt L−1 e−ns 

= u(t − n)e−k(t−n). 
s + k 

⇒ 
s + k 

Thus, 

x(t) = Ae−kt + 
r

e−kt + 
r

u(t − 1)e−k(t−1) + 
r

u(t − 2)e−k(t−2) + 
r

u(t − 3)e−k(t−3) + . . . 
2 2 2 2 

Here are graphs of the solutions to examples 2 and 3 (with A = 0, k = 1, 
r = 2). Notice how they settle down to periodic behavior. 
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Fig. 1. Graphs from example 2 (left) and example 3 (right).
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