IVP's: Longer Examples

The fish population in a lake is not reproducing fast enough and the population is decaying exponentially with decay rate k. A program is started to stock the lake with fish. Three different scenarios are discussed below.

Example 1. A program is started to stock the lake with fish at a constant rate of r units of fish/year. Unfortunately, after $1 / 2$ year the funding is cut and the program ends. Model this situation and solve the resulting DE for the fish population as a function of time.
Solution. Let $x(t)$ be the fish population and let $A=x\left(0^{-}\right)$be the initial population. Exponential decay means the population is modeled by

$$
\begin{equation*}
\dot{x}+k x=f(t), \quad x\left(0^{-}\right)=A \tag{1}
\end{equation*}
$$

where $f(t)$ is the rate fish are being added to the lake. In this case

$$
f(t)= \begin{cases}r & \text { for } 0<t<1 / 2 \\ 0 & \text { for } 1 / 2<t\end{cases}
$$

First, write f in 'u-format': $f(t)=r(1-u(t-1 / 2))$.
Next, take the Laplace transform and solve for $X(s)$.

$$
\begin{aligned}
& F(s)=\mathcal{L}(f)(s)=\frac{r}{s}-\frac{r}{s} e^{-s / 2} . \\
& \Rightarrow \quad s X-x\left(0^{-}\right)+k X=F(s) \quad \Rightarrow \quad(s+k) X-A=\frac{r}{s}\left(1-e^{-s / 2}\right) \\
& \Rightarrow \quad X(s)=\frac{A}{s+k}+\frac{r}{s(s+k)}\left(1-e^{-s / 2}\right) .
\end{aligned}
$$

To find $x(t)$ we temporarily ignore the factor of $e^{-s / 2}$ and take Laplace inverse of what's left. (using partial fractions).

$$
\mathcal{L}^{-1}\left(\frac{A}{s+k}\right)=A e^{-k t}, \quad \mathcal{L}^{-1}\left(\frac{r}{s(s+k)}\right)=\frac{r}{k}\left(1-e^{-k t}\right) .
$$

The t-translation formula says

$$
\mathcal{L}^{-1}\left(\frac{r e^{-s / 2}}{s(s+k)}\right)=u(t-1 / 2) \frac{r}{k}\left(1-e^{-k(t-1 / 2)}\right)
$$

Putting it all together we get (in u and cases format).

$$
\begin{aligned}
x(t) & =A e^{-k t}+\frac{r}{k}\left(1-e^{-k t}\right)-u(t-1 / 2) \frac{r}{k}\left(1-e^{-k(t-1 / 2)}\right) \\
& = \begin{cases}A e^{-k t}+\frac{r}{k}\left(1-e^{-k t}\right) & \text { for } 0<t<1 / 2 \\
A e^{-k t}-\frac{r}{k}\left(e^{-k t}+e^{-k(t-1 / 2)}\right) & \text { for } 1 / 2<t .\end{cases}
\end{aligned}
$$

Example 2. (Periodic on/off) The program is refunded and the have enough money to stock at a constant rate of r for the first half of each year. Find $x(t)$ in this case.
Solution. All that's changed from example 1 is the input function $f(t)$. We write it in cases-format and translate that to u-format so we can take the Laplace transform.

$$
\begin{aligned}
f(t) & = \begin{cases}r & \text { for } 0<t<1 / 2 \\
0 & \text { for } 1 / 2<t<1 \\
r & \text { for } 0<t<3 / 2 \\
0 & \text { for } 3 / 2<t<2 \\
\cdots\end{cases} \\
& =r\left(1-u\left(t-\frac{1}{2}\right)+u(t-1)-u\left(t-\frac{3}{2}\right)+\ldots\right)
\end{aligned}
$$

The computations from here are essentially the same as in the previous example.

$$
\begin{aligned}
& \mathcal{L}(f)=\frac{r}{s}\left(1-e^{-s / 2}+e^{-s}-e^{-3 s / 2}+\ldots\right) \\
& \Rightarrow X=\frac{A}{s+k}+\frac{r}{s(s+k)}\left(1-e^{-s / 2}+e^{-s}-\ldots\right) \\
& \Rightarrow x(t)=A e^{-k t}+\frac{r}{k}\left[\left(1-e^{-k t}\right)-u(t-1 / 2)\left(1-e^{-k(t-1 / 2)}\right)+\ldots\right] \\
& \Rightarrow x(t)= \begin{cases}A e^{-k t}+\frac{r}{k}-\frac{r}{k} e^{-k t} & \text { for } 0<t<\frac{1}{2} \\
A e^{-k t}-\frac{r}{k}\left(e^{-k t}-e^{-k(t-1 / 2)}\right) & \text { for } \frac{1}{2}<t<1 \\
\cdots & \text { for } n<t<n+\frac{1}{2} \\
A e^{-k t}+\frac{r}{k}-\frac{r}{k}\left(e^{-k t}-e^{-k(t-1 / 2)}+\ldots+e^{-k(t-n)}\right) \\
A e^{-k t}-\frac{r}{k}\left(e^{-k t}-e^{-k(t-1 / 2)}+\ldots-e^{-k(t-n-1 / 2)}\right) & \text { for } n+\frac{1}{2}<t<n+1 \\
\cdots & \end{cases}
\end{aligned}
$$

Factoring out $e^{-k t}$ gives:
$x(t)= \begin{cases}A e^{-k t}+\frac{r}{k}-\frac{r}{k} e^{-k t}\left(1-e^{k / 2}+e^{k}-e^{3 k / 2}+\ldots+e^{n k}\right) & \text { for } n<t<n+1 / 2 \\ A e^{-k t}-\frac{r}{k} e^{-k t}\left(1-e^{k / 2}+e^{k}-\ldots-e^{k(n+1 / 2)}\right) & \text { for } n+1 / 2<t<n+1 .\end{cases}$
Note that the constant term r / k is only present during periods of stocking.
Example 3. (Impulse train) The answer to the previous example is a little hard to read. We know from experience that impulsive input usually leads to simpler output. In this scenario suppose that once a year $r / 2$ units of fish are dumped all at once into the lake. Find $x(t)$ in this case.
Solution. Once again, all that's changed from example 1 is the input function $f(t)$. The IVP is still given by equation (1).

$$
f(t)=\frac{r}{2}(\delta(t)+\delta(t-1)+\delta(t-2)+\delta(t-3)+\ldots)
$$

This is called an impulse train. Its Laplace transform is easy to find.

$$
F(s)=\frac{r}{2}\left(1+e^{-s}+e^{-2 s}+e^{-3 s}+\ldots\right) .
$$

One nice thing about delta functions is that they don't introduce any new terms into the partial fractions part of the problem.

$$
\begin{aligned}
s X(s)-x\left(0^{-}\right)+k X(s) & =\frac{r}{2}\left(1+e^{-s}+e^{-2 s}+e^{-3 s}+\ldots\right) \\
\Rightarrow X(s) & =\frac{A}{s+k}+\frac{r}{2(s+k)}\left(1+e^{-s}+e^{-2 s}+e^{-3 s}+\ldots\right) .
\end{aligned}
$$

Laplace inverse is easy:

$$
\mathcal{L}^{-1}\left(\frac{1}{s+k}\right)=e^{-k t} \quad \Rightarrow \quad \mathcal{L}^{-1}\left(\frac{e^{-n s}}{s+k}\right)=u(t-n) e^{-k(t-n)} .
$$

Thus,
$x(t)=A e^{-k t}+\frac{r}{2} e^{-k t}+\frac{r}{2} u(t-1) e^{-k(t-1)}+\frac{r}{2} u(t-2) e^{-k(t-2)}+\frac{r}{2} u(t-3) e^{-k(t-3)}+\ldots$
Here are graphs of the solutions to examples 2 and 3 (with $A=0, k=1$, $r=2$). Notice how they settle down to periodic behavior.

Fig. 1. Graphs from example 2 (left) and example 3 (right).

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

