IVP's and t-translation

1. Introductory Example

Consider the system $\dot{x}+3 x=f(t)$. In the previous note we found its unit impulse response:

$$
w(t)=\left\{\begin{array}{ll}
0 & \text { for } t<0 \\
e^{-3 t} & \text { for } t>0
\end{array}=u(t) e^{-3 t} .\right.
$$

This is the response from rest IC to the input $f(t)=\delta(t)$. What if we shifted the impulse to another time, say, $f(t)=\delta(t-5)$? Linear time invariance tells us the response will also be shifted. That is, the solution to

$$
\begin{equation*}
\dot{x}+3 x=\delta(t-2), \quad \text { with rest IC } \tag{1}
\end{equation*}
$$

is

$$
x(t)=w(t-2)=\left\{\begin{array}{ll}
0 & \text { for } t<2 \\
e^{-3 t} & \text { for } t>2
\end{array}=u(t-2) e^{-3(t-2)} .\right.
$$

In words, this is a system of exponential decay. The decay starts as soon as there is an input into the system. Graphs are shown in Figure 1 below.

Figure 1. Graphs of $w(t)$ and $x(t)=w(t-2)$.
We know that $\mathcal{L}(\delta(t-a))=e^{-a s}$. So, we can find $X=\mathcal{L}(x)$ by taking the Laplace transform of (1).

$$
(s+3) X(s)=e^{-2 s} \Rightarrow X(s)=\frac{e^{-2 s}}{s+3}=e^{-2 s} W(s),
$$

where $W=\mathcal{L} w$. This is an example of the t-translation rule.

2. t-translation Rule

We give the rule in two forms.

$$
\begin{align*}
\mathcal{L}(u(t-a) f(t-a)) & =e^{-a s} F(s) \tag{2}\\
\mathcal{L}(u(t-a) f(t)) & =e^{-a s} \mathcal{L}(f(t+a)) . \tag{3}
\end{align*}
$$

For completeness we include the formulas for

$$
\begin{align*}
\mathcal{L}(u(t-a)) & =e^{-a s} / s \tag{4}\\
\mathcal{L}(\delta(t-a)) & =e^{-a s} . \tag{5}
\end{align*}
$$

Remarks:

1. Formula (3) is ungainly. The notation will become clearer in the examples below.
2. Formula (2) is most often used for computing the inverse Laplace transform, i.e., as

$$
u(t-a) f(t-a)=\mathcal{L}^{-1}\left(e^{-a s} F(s)\right)
$$

3. These formulas parallel the s-shift rule. In that rule, multiplying by an exponential on the time (t) side led to a shift on the frequency (s) side. Here, a shift on the time side leads to multiplication by an exponential on the frequency side.
Proof: The proof of (2) is a very simple change of variables on the Laplace integral.

$$
\begin{aligned}
\mathcal{L}(u(t-a) f(t-a)) & =\int_{0}^{\infty} u(t-a) f(t-a) e^{-s t} d t \\
& =\int_{a}^{\infty} f(t-a) e^{-s t} d t \quad(u(t-a)=0 \text { for } t<a) \\
& \left.=\int_{0}^{\infty} f(\tau) e^{-s(\tau+a)} d \tau \quad \text { (change of variables: } \tau=t-a\right) \\
& =e^{-a s} \int_{0}^{\infty} f(\tau) e^{-s \tau} d \tau \\
& =e^{-a s} F(s) .
\end{aligned}
$$

Formula (3) follows easily from (2). The easiest way to proceed is by introducing a new function. Let $g(t)=f(t+a)$, so

$$
f(t)=g(t-a) \quad \text { and } \quad G(s)=\mathcal{L}(g)=\mathcal{L}(f(t+a))
$$

We get

$$
\mathcal{L}(u(t-a) f(t))=\mathcal{L}(u(t-a) g(t-a))=e^{-a s} G(s)=e^{-a s} \mathcal{L}(f(t+a)) .
$$

The second equality follows by applying (2) to $g(t)$.
Example. Find $\mathcal{L}^{-1}\left(\frac{k e^{-a s}}{s^{2}+k^{2}}\right)$.

Solution. $f(t)=\mathcal{L}^{-1}\left(\frac{k}{s^{2}+k^{2}}\right)=\sin (k t)$.
$\Rightarrow \mathcal{L}^{-1}\left(\frac{k e^{-a s}}{s^{2}+k^{2}}\right)=u(t-a) f(t-a)=u(t-a) \sin k(t-a)$.
Example. $\mathcal{L}(u(t-3) t)=e^{-3 s} \mathcal{L}(t+3)=e^{-3 s}\left(\frac{1}{s^{2}}+\frac{3}{s}\right)$.
Example. $\mathcal{L}(u(t-3) \cdot 1)=e^{-3 s} \mathcal{L}(1)=e^{-3 s} / s$.
Example. Find $\mathcal{L}(f)$ for $f(t)= \begin{cases}0 & \text { for } t<2 \\ t^{2} & \text { for } t>2 .\end{cases}$
Solution. $f(t)=u(t-2) t^{2} \Rightarrow F(s)=e^{-2 s} \mathcal{L}\left((t+2)^{2}\right)=e^{-2 s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{4}{s}\right)$.
Example. Find $\mathcal{L}(f)$ for $f(t)= \begin{cases}\cos (t) & \text { for } 0<t<2 \pi \\ 0 & \text { for } t>2 \pi .\end{cases}$
Solution. $f(t)=\cos (t)(u(t)-u(t-2 \pi))=u(t) \cos (t)-u(t-2 \pi) \cos (t)$.
$\Rightarrow F(s)=\frac{s}{s^{2}+1}-e^{-2 \pi s} \mathcal{L}(\cos (t+2 \pi))=\left(1-e^{-2 \pi s}\right) \frac{s}{s^{2}+1}$.
We will look at more involved examples in the next note.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

