Table Entries: Derivative Rules

1. t-derivative rule

This is a course on differential equations. We should try to compute $\mathcal{L}\left(f^{\prime}\right)$. (We use the notation f^{\prime} instead of \dot{f} simply because we think the dot does not sit nicely over the tall letter f.)

As usual, let $\mathcal{L}(f)(s)=F(s)$. Let f^{\prime} be the generalized derivative of f. (Recall, this means jumps in f produce delta functions in f^{\prime}.) The t derivative rule is

$$
\begin{align*}
\mathcal{L}\left(f^{\prime}\right) & =s F(s)-f\left(0^{-}\right) \tag{1}\\
\mathcal{L}\left(f^{\prime \prime}\right) & =s^{2} F(s)-s f\left(0^{-}\right)-f^{\prime}\left(0^{-}\right) \tag{2}\\
\mathcal{L}\left(f^{(n)}\right) & =s^{n} F(s)-s^{n-1} f\left(0^{-}\right)-s^{n-2} f^{\prime}\left(0^{-}\right)+\ldots+f^{(n-1)}\left(0^{-}\right) \tag{3}
\end{align*}
$$

Proof: Rule (1) is a simple consequence of the definition of Laplace transform and integration by parts.

$$
\begin{array}{rll}
\mathcal{L}\left(f^{\prime}\right) & =\int_{0^{-}}^{\infty} f^{\prime}(t) e^{-s t} d t & \begin{array}{l}
u=e^{-s t} \\
u^{\prime}=-s e^{-s t}
\end{array} \\
& \left.=f(t) e^{-s t}\right]_{0^{-}}^{\infty}+s \int_{0^{-}}^{\infty} f(t) e^{-s t} d t \\
& =-f(t) \\
& &
\end{array}
$$

The last equality follows from:

1. We assume $f(t)$ has exponential order, so if $\operatorname{Re}(s)$ is large enough $f(t) e^{-s t}$ is 0 at $t=\infty$.
2. The integral in the second term is none other than the Laplace transform of $f(t)$.
Rule (2) follows by applying rule (1) twice.

$$
\begin{aligned}
\mathcal{L}\left(f^{\prime \prime}\right) & =s \mathcal{L}\left(f^{\prime}\right)-f^{\prime}\left(0^{-}\right) \\
& =s\left(\mathcal{L}(f)-f\left(0^{-}\right)\right)-f^{\prime}\left(0^{-}\right) \\
& =s F(s)-s f\left(0^{-}\right)-f^{\prime}\left(0^{-}\right) .
\end{aligned}
$$

Rule (3) Follows by applying rule (1) n times.
Notes: 1. We will call the terms $f\left(0^{-}\right), f^{\prime}\left(0^{-}\right)$the 'annoying terms'. We will be happiest when our signal $f(t)$ has rest initial conditions, so all of
the annoying terms are 0 .
2. A good way to think of the t-derivative rules is

$$
\begin{aligned}
\mathcal{L}(f) & =F(s) \\
\mathcal{L}\left(f^{\prime}\right) & =s F(s)+\text { annoying terms at } 0^{-} \\
\mathcal{L}\left(f^{\prime \prime}\right) & =s^{2} F(s)+\text { annoying terms at } 0^{-}
\end{aligned}
$$

Roughly speaking, Laplace transforms differentiation in t to multiplication by s.
3. The proof of rule (1) uses integration by parts. This is clearly valid if $f^{\prime}(t)$ is continuous at $t=0$. It is also true (although we won't show this) if $f^{\prime}(t)$ is a generalized function. -See example 2 below.

Example 1. Let $f(t)=e^{a t}$. We can compute $\mathcal{L}\left(f^{\prime}\right)$ directly and by using rule (1).
Directly: $f^{\prime}(t)=a e^{a t} \Rightarrow \mathcal{L}\left(f^{\prime}\right)=a /(s-a)$.
Rule (1): $\mathcal{L}(f)=F(s)=1 /(s-a) \Rightarrow \mathcal{L}\left(f^{\prime}\right)=s F(s)-f\left(0^{-}\right)=s /(s-$ a) $-1=a /(s-a)$.

Both methods give the same answer.
Example 2. Let $u(t)$ be the unit step function, so $\dot{u}(t)=\delta(t)$.
Directly: $\mathcal{L}(\dot{u})=\mathcal{L}(\delta)=1$.
Rule (1): $\mathcal{L}(\dot{u})=s \mathcal{L}(u)-u\left(0^{-}\right)=s(1 / s)-0=1$.
Both methods give the same answer.
Example 3. Let $f(t)=t^{2}+2 t+1$. Compute $\mathcal{L}\left(f^{\prime \prime}\right)$ two ways.
Solution. Directly: $f^{\prime \prime}(t)=2 \Rightarrow \mathcal{L}\left(f^{\prime \prime}\right)=2 / s$.
Using rule (3): $\quad \mathcal{L}\left(f^{\prime \prime}\right)=s^{2} F(s)-s f\left(0^{-}\right)-f^{\prime}\left(0^{-}\right)=s^{2}\left(2 / s^{3}+2 / s^{2}+\right.$ $1 / s)-s \cdot 1-2=2 / s$.
Both methods give the same answer.

2. s-derivative rule

There is a certain symmetry in our formulas. If derivatives in time lead to multiplication by s then multiplication by t should lead to derivatives in s. This is true, but, as usual, there are small differences in the details of the formulas.

The s-derivative rule is

$$
\begin{align*}
\mathcal{L}(t f)(s) & =-F^{\prime}(s) \tag{4}\\
\mathcal{L}\left(t^{n} f\right)(s) & =(-1)^{n} F^{(n)}(s) \tag{5}
\end{align*}
$$

Proof: Rule (4) is a simple consequence of the definition of Laplace transform.

$$
\begin{aligned}
F(s) & =\mathcal{L}(f)=\int_{0^{-}}^{\infty} f(t) e^{-s t} d t \\
\Rightarrow F^{\prime}(s) & =\frac{d}{d s} \int_{0^{-}}^{\infty} f(t) e^{-s t} d t \\
& =\int_{0^{-}}^{\infty}-t f(t) e^{-s t} \\
& =-\mathcal{L}(t f(t))
\end{aligned}
$$

Rule (5) is just rule (4) applied n times.
Example 4. Use the s-derivative rule to find $\mathcal{L}(t)$.
Solution. Start with $f(t)=1$, then $F(s)=1 / s$. The s-derivative rule now says $\mathcal{L}(t)=-F^{\prime}(s)=1 / s^{2}$-which we know to be the answer.

Example 5. Use the s-derivative rule to find $\mathcal{L}\left(t e^{a t}\right.$ and $\mathcal{L}\left(t^{n} e^{a t}\right)$.
Solution. Start with $f(t)=e^{a t}$, then $F(s)=1 /(s-a)$. The s-derivative rule now says $\mathcal{L}\left(t e^{a t}\right)=-F^{\prime}(s)=1 /(s-a)^{2}$.
Continuing: $\mathcal{L}\left(t^{2} e^{a t}\right)=F^{\prime \prime}(s)=2 /(s-a)^{3}$,
$\mathcal{L}\left(t^{3} e^{a t}\right)=-F^{\prime \prime \prime}(s)=3 \cdot 2 /(s-a)^{4}, \quad \mathcal{L}\left(t^{4} e^{a t}\right)=F^{(4)}(s)=4 \cdot 3 \cdot 2 /(s-a)^{5}$, $\mathcal{L}\left(t^{n} e^{a t}\right)=(-1)^{n} F^{(n)}(s)=n!/(s-a)^{n+1}$.

With Laplace, there is often more than one way to compute. We know $\mathcal{L}\left(t^{n}\right)=n!/ s^{n+1}$. Therefore the s-shift rule also gives the above formula for $\mathcal{L}\left(t^{n} e^{a t}\right)$.

3. Repeated Quadratic Factors

Recall the table entries for repeated quadratic factors

$$
\begin{align*}
\mathcal{L}\left(\frac{1}{2 \omega^{3}}(\sin (\omega t)-\omega t \cos (\omega t))\right) & =\frac{1}{\left(s^{2}+\omega^{2}\right)^{2}} \tag{7}\\
\mathcal{L}\left(\frac{t}{2 \omega} \sin (\omega t)\right) & =\frac{s}{\left(s^{2}+\omega^{2}\right)^{2}} \tag{8}\\
\mathcal{L}\left(\frac{1}{2 \omega}(\sin (\omega t)+\omega t \cos (\omega t))\right) & =\frac{s^{2}}{\left(s^{2}+\omega^{2}\right)^{2}} \tag{9}
\end{align*}
$$

Previously we proved these formulas using partial fractions and factoring the denominators on the frequency side into complex linear factors. Let's prove them again using the s-derivative rule.

Proof of (8) using the s-derivative rule.
Let $f(t)=\sin (\omega t)$. We know $F(s)=\frac{\omega}{s^{2}+\omega^{2}}$. The s-derivative rule implies

$$
\mathcal{L}(t \sin \omega t)=-F^{\prime}(s)=\frac{2 \omega s}{\left(s^{2}+\omega^{2}\right)^{2}}
$$

This formula is (8) with the factor of 2ω moved from one side to the other.
The other two formulas can be proved in a similar fashion. We won't give the proofs here.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

