18.03SC Practice Problems 29

Solving IVP's

Rules for the Laplace transform

Definition: $\quad \mathcal{L}[f(t)]=F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t \quad$ for $\quad \operatorname{Re}(s) \gg 0$.
Linearity: $\quad \mathcal{L}[a f(t)+b g(t)]=a F(s)+b G(s)$.
$\mathcal{L}^{-1}: \quad F(s)$ essentially determines $f(t)$ for $t>0$.
s-shift rule: $\quad \mathcal{L}\left[e^{r t} f(t)\right]=F(s-r)$.
s-derivative rule: $\quad \mathcal{L}[t f(t)]=-F^{\prime}(s)$.
t-derivative rule: $\quad \mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f\left(0^{-}\right)$.

Formulas for the Laplace transform

$$
\begin{gathered}
\mathcal{L}[1]=\frac{1}{s}, \quad \mathcal{L}[\delta(t-a)]=e^{-a s} \\
\mathcal{L}\left[e^{r t}\right]=\frac{1}{s-r}, \quad \mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}} \\
\mathcal{L}[\cos (\omega t)]=\frac{s}{s^{2}+\omega^{2}}, \quad \mathcal{L}[\sin (\omega t)]=\frac{\omega}{s^{2}+\omega^{2}}
\end{gathered}
$$

1. Let $f(t)=e^{-t} \cos (3 t)$.
(a) From the rules and tables, what is $F(s)=\mathcal{L}[f(t)]$?
(b) Compute the derivative $f^{\prime}(t)$ and its Laplace transform. Verify the t-derivative rule in this case.
2. Use the Laplace transform to find the unit step and impulse response of the operator $D+2 I$.
3. Use the Laplace transform to find the solution to $\dot{x}+2 x=t^{2}$ with initial condition $x(0)=1$.
Solve each of the following by using the Laplace transform.
4. Find the unit impulse response of the operator $D+3 I$.
5. Find the solution to $\dot{x}+3 x=e^{-t}$ with rest initial conditions (so $x(0)=0$).
6. Find the unit impulse response of the operator $D^{3}+D$.
7. (a) Find the solution (for $t>0$) to $\dot{x}+3 x=1$ with $x(0)=2$ by applying the Laplace transform to the equation.
(b) Find the solution (for $t>0$) to $\dot{x}+3 x=1+2 \delta(t)$ with rest initial conditions by applying the Laplace transform to the equation.
(c) Explain the relationship between these two problems.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

