Part I Problems

Solve the following IVP's by using the Laplace transform.

Problem 1: $y' - y = e^{3t}$, $y(0^-) = 1$ Problem 2: y'' - 3y' + 2y = 0, $y(0^-) = 1$, $y'(0^-) = 1$ Problem 3: $y'' + 4y = \sin t$, $y(0^-) = 1$, $y'(0^-) = 0$ Problem 4: $y'' - 2y' + 2y = 2e^t$, $y(0^-) = 0$, $y'(0^-) = 1$ Problem 5: $y'' - 2y' + y = e^t$, $y(0^-) = 1$, $y'(0^-) = 0$ Problem 6: x'' - 6x' + 8x = 2, $x(0^-) = x'(0^-) = 0$ Problem 7: Solve the IVP $x^{(4)} + 2x'' + x = e^{2t}$; $x(0^-) = x'(0^-) = x''(0^-) = x^{(3)}(0^-) = 0$

Problem 8: Find the Laplace transform of $f(t) = (u(t) - u(t - 2\pi)) \sin(t)$ by use of the *t*-shift rule.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.