Part II Problems and Solutions

Problem 1: [ODEs via Laplace transform] Let *a* and *b* be real numbers, with $a \neq 0$.

(a) Find the unit impulse response and unit step response for the first order operator aD + bI by using Laplace transform methods to solve initial value problems with rest initial conditions.

(b) Solve $a\dot{x} + bx = t u(t)$ with rest initial conditions in three ways. (*i*) Undetermined coefficients to get x_p , and add the appropriate transient. (*ii*) Compute w(t) * t (using the value for w(t) you found in (a)). (*iii*) Apply Laplace transform, solve, and transform back.

Solution: (a) The unit impulse response is the solution to

$$a\dot{x} + bx = \delta(t)$$
, with rest IC.

Taking the Laplace transform of this equation gives

$$asX(s) + bX(s) = 1$$

Solving for X(s) and then taking the inverse Laplace transform we get

$$X(s) = \frac{1}{as+b} = \frac{1/a}{s+(b/a)} \Rightarrow x(t) = \frac{1}{a}u(t)e^{-bt/a}.$$

The unit impulse response is $w(t) = \frac{1}{a}u(t)e^{-bt/a}$.

The unit step response is the solution to

$$a\dot{x} + bx = u(t)$$
, with rest IC.

Laplace transform: $(as + b)X(s) = \frac{1}{s} \Rightarrow X(s) = \frac{1}{s(as + b)}$. Partial fractions: $\frac{1}{s(as + b)} = \frac{A}{s} + \frac{B}{as + b}$. Coverup method: A = 1/b, B = -a/b. Unit step response (via Laplace inverse): $x(t) = u(t) \left(\frac{1}{b} - \frac{1}{b}e^{-bt/a}\right)$. (b) This is called the "unit ramp response."

(i) Case 1, $b \neq 0$: For t > 0, try the solution $x_p = c_1 t + c_0$. Substitute into the DE and solve for c_1 and c_2 :

$$ac_1 + b(c_1t + c_0) = t \Rightarrow bc_1 = 1, ac_1 + bc_0 = 0 \Rightarrow c_1 = \frac{1}{b}, c_0 = -a/b^2.$$

Particular solution: $x_p = \frac{1}{b}t - \frac{a}{b^2}$. General solution: $x(t) = x_p + ce^{-bt/a}$ Rest IC: $x(0) = x_p(0) + c = -\frac{a}{b^2} + c \Rightarrow c = \frac{a}{b^2}$. Solution (for all *t*): $x(t) = u(t) \left(\frac{1}{b}t - \frac{a}{b^2} + \frac{a}{b^2}e^{-bt/a}\right)$.

Case 2, b = 0: In this case $a\dot{x} = t$, which has general solution $x(t) = \frac{1}{2a}t^2 + c$. The rest initial conditions imply 0 = x(0) = c, so $x(t) = u(t)\frac{1}{2a}t^2$.

(ii) If
$$b \neq 0$$
: $w(t) * t = \int_0^t \frac{1}{a} e^{-b(t-\tau)/a} \tau \, d\tau = \frac{1}{a} e^{-bt/a} \int_0^t e^{b\tau/a} \tau \, d\tau$. Do this by parts: $u = \tau$,
 $du = d\tau$, $dv = e^{b\tau/a} d\tau$, $v = \frac{a}{b} e^{b\tau/a}$, $w(t) * t = \frac{1}{a} e^{-bt/a} \left(\tau \frac{a}{b} e^{b\tau/a} \Big|_0^t - \int_0^t \frac{a}{b} e^{b\tau/a} \, d\tau \right) = \frac{1}{a} e^{-tb/a} \left(t \frac{a}{b} e^{bt/a} - \frac{a^2}{b^2} (e^{bt/a} - 1) \right) = \frac{1}{b} t - \frac{a}{b^2} (1 - e^{-bt/a}).$
If $b = 0$, $w(t) * t = \int_0^t \frac{1}{a} \tau \, d\tau = \frac{1}{a} \frac{t^2}{2}.$

(iii) $a\dot{x} + bx = t$ has Laplace transform $asX + bX = \frac{1}{s^2}$, so

$$X = \frac{1}{s^2(as+b)} = \frac{71}{s} + \frac{b}{s^2} + \frac{c}{as+b}$$

Coverup: Multiply by s^2 and set s = 0 to get $B = \frac{1}{b}$.

Multiply by as + b and set $s = -\frac{b}{a}$ to get $C = \frac{a^2}{b^2}$. Here's a clean way to get A: multiply through by s and then take s very large in size. You find $0 = A + \frac{C}{a}$, or $A = -\frac{a}{b^2}$. So $X = -\frac{a/b^2}{s} + \frac{1/b}{s^2} + \frac{a/b^2}{s+b/a}$, which is the Laplace transform of $x = -\frac{a}{b^2} + \frac{1}{b}t + \frac{a}{b^2}e^{-bt/a}$. If b = 0, $a\dot{x} = t$ has Laplace transform $(as) X = \frac{1}{s^2}$ so $X = \frac{1}{a}\frac{1}{s^3}$, and thus $x = u(t)\frac{1}{a}\frac{1}{2}t^2$ MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.