Part II Problems and Solutions

Problem 1: [ODEs via Laplace transform] Let a and b be real numbers, with $a \neq 0$.
(a) Find the unit impulse response and unit step response for the first order operator $a D+b I$ by using Laplace transform methods to solve initial value problems with rest initial conditions.
(b) Solve $a \dot{x}+b x=t u(t)$ with rest initial conditions in three ways.
(i) Undetermined coefficients to get x_{p}, and add the appropriate transient.
(ii) Compute $w(t) * t$ (using the value for $w(t)$ you found in (a)).
(iii) Apply Laplace transform, solve, and transform back.

Solution: (a) The unit impulse response is the solution to

$$
a \dot{x}+b x=\delta(t), \quad \text { with rest IC. }
$$

Taking the Laplace transform of this equation gives

$$
a s X(s)+b X(s)=1
$$

Solving for $X(s)$ and then taking the inverse Laplace transform we get

$$
X(s)=\frac{1}{a s+b}=\frac{1 / a}{s+(b / a)} \Rightarrow x(t)=\frac{1}{a} u(t) e^{-b t / a}
$$

The unit impulse response is $w(t)=\frac{1}{a} u(t) e^{-b t / a}$.
The unit step response is the solution to

$$
a \dot{x}+b x=u(t), \quad \text { with rest IC. }
$$

Laplace transform: $(a s+b) X(s)=\frac{1}{s} \Rightarrow X(s)=\frac{1}{s(a s+b)}$.
Partial fractions: $\frac{1}{s(a s+b)}=\frac{A}{s}+\frac{B}{a s+b}$.
Coverup method: $A=1 / b, B=-a / b$.
Unit step response (via Laplace inverse): $x(t)=u(t)\left(\frac{1}{b}-\frac{1}{b} e^{-b t / a}\right)$.
(b) This is called the "unit ramp response."
(i) Case $1, b \neq 0$: For $t>0$, try the solution $x_{p}=c_{1} t+c_{0}$.

Substitute into the DE and solve for c_{1} and c_{2} :

$$
a c_{1}+b\left(c_{1} t+c_{0}\right)=t \Rightarrow b c_{1}=1, a c_{1}+b c_{0}=0 \Rightarrow c_{1}=\frac{1}{b^{\prime}}, c_{0}=-a / b^{2}
$$

Particular solution: $x_{p}=\frac{1}{b} t-\frac{a}{b^{2}}$.
General solution: $x(t)=x_{p}+c e^{-b t / a}$
Rest IC: $x(0)=x_{p}(0)+c=-\frac{a}{b^{2}}+c \Rightarrow c=\frac{a}{b^{2}}$.
Solution (for all t): $x(t)=u(t)\left(\frac{1}{b} t-\frac{a}{b^{2}}+\frac{a}{b^{2}} e^{-b t / a}\right)$.
Case $2, b=0$: In this case $a \dot{x}=t$, which has general solution $x(t)=\frac{1}{2 a} t^{2}+c$. The rest initial conditions imply $0=x(0)=c$, so $x(t)=u(t) \frac{1}{2 a} t^{2}$.
(ii) If $b \neq 0: \quad w(t) * t=\int_{0}^{t} \frac{1}{a} e^{-b(t-\tau) / a} \tau d \tau=\frac{1}{a} e^{-b t / a} \int_{0}^{t} e^{b \tau / a} \tau d \tau$. Do this by parts: $u=\tau$, $d u=d \tau, d v=e^{b \tau / a} d \tau, v=\frac{a}{b} e^{b \tau / a}, \quad w(t) * t=$
$\frac{1}{a} e^{-b t / a}\left(\left.\tau \frac{a}{b} e^{b \tau / a}\right|_{0} ^{t}-\int_{0}^{t} \frac{a}{b} e^{b \tau / a} d \tau\right)=\frac{1}{a} e^{-t b / a}\left(t \frac{a}{b} b^{b t / a}-\frac{a^{2}}{b^{2}}\left(e^{b t / a}-1\right)\right)=\frac{1}{b} t-\frac{a}{b^{2}}\left(1-e^{-b t / a}\right)$.
If $b=0, w(t) * t=\int_{0}^{t} \frac{1}{a} \tau d \tau=\frac{1}{a} \frac{t^{2}}{2}$.
(iii) $a \dot{x}+b x=t$ has Laplace transform $a s X+b X=\frac{1}{s^{2}}$, so
$X=\frac{1}{s^{2}(a s+b)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{a s+b}$
Coverup: Multiply by s^{2} and set $s=0$ to get $B=\frac{1}{b}$.
Multiply by $a s+b$ and set $s=-\frac{b}{a}$ to get $C=\frac{a^{2}}{b^{2}}$.
Here's a clean way to get A : multiply through by s and then take s very large in size. You find $0=A+\frac{C}{a}$, or $A=-\frac{a}{b^{2}}$.
So $X=-\frac{a / b^{2}}{s}+\frac{1 / b}{s^{2}}+\frac{a / b^{2}}{s+b / a}$, which is the Laplace transform of $x=-\frac{a}{b^{2}}+\frac{1}{b} t+\frac{a}{b^{2}} e^{-b t / a}$.
If $b=0, \quad a \dot{x}=t$ has Laplace transform $(a s) X=\frac{1}{s^{2}}$ so $X=\frac{1}{a} \frac{1}{s^{3}}$, and thus $x=u(t) \frac{1}{a} \frac{1}{2} t^{2}$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

