Definition and Properties

1. Definition

The convolution of two functions f and g is a third function which we denote $f * g$. It is defined as the following integral

$$
\begin{equation*}
(f * g)(t)=\int_{0^{-}}^{t^{+}} f(\tau) g(t-\tau) d \tau \quad \text { for } t>0 \tag{1}
\end{equation*}
$$

We will leave this unmotivated until the next note, and for now just learn how to work with it.

There are a few things to point out about the formula.

- The variable of integration is τ. We can't use t because that is already used in the limits and in the integrand. We can choose any symbol we want for the variable of integration -it is just a dummy variable.
- The limits of integration are 0^{-}and t^{+}. This is important, particularly when we work with delta functions. If f and g are continuous or have at worst jump discontinuities then we can use 0 and t for the limits. You will often see convolution written like this:

$$
f * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

- We are considering one-sided convolution. There is also a two-sided convolution where the limits of integration are $\pm \infty$.
- (Important.) One-sided convolution is only concerned with functions on the interval $\left(0^{-}, \infty\right)$. When using convolution we never look at $t<0$.

2. Examples

Example 1 below calculates two useful convolutions from the definition (1). As you can see, the form of $f * g$ is not very predictable from the form of f and g.

Example 1. Show that

$$
e^{a t} * e^{b t}=\frac{e^{a t}-e^{b t}}{a-b}, \quad a \neq b ; \quad e^{a t} * e^{a t}=t e^{a t}
$$

Solution. We show the first; the second calculation is similar. If $a \neq b$,
$\left.e^{a t} * e^{b t}=\int_{0}^{t} e^{a \tau} e^{b(t-\tau)} d \tau=e^{b t} \int_{0}^{t} e^{(a-b) \tau} d \tau=e^{b t} \frac{e^{(a-b) \tau}}{a-b}\right]_{0}^{t}=e^{b t} \frac{e^{(a-b) t}-1}{a-b}=\frac{e^{a t}-e^{b t}}{a-b}$.
Note that because the functions are continuous we could safely integrate just from 0 to t instead of having to specify precisely 0^{-}to t^{+}.

The convolution gives us a formula for a particular solution y_{p} to an inhomogeneous linear ODE. The next example illustrates this for a first order equation.
Example 2. Express as a convolution the solution to the first order constantcoefficient linear IVP.

$$
\begin{equation*}
\dot{y}+k y=q(t) ; \quad y(0)=0 . \tag{2}
\end{equation*}
$$

Solution. The integrating factor is $e^{k t}$; multiplying both sides by it gives

$$
\left(y e^{k t}\right)^{\prime}=q(t) e^{k t} .
$$

Integrate both sides from 0 to t, and apply the Fundamental Theorem of Calculus to the left side; since we have $y(0)=0$, the solution we seek satisfies

$$
y_{p} e^{k t}=\int_{0}^{t} q(\tau) e^{k \tau} d \tau ; \quad \text { (} \tau \text { is the dummy variable of integration.) }
$$

Moving the $e^{k t}$ to the right side and placing it under the integral sign gives

$$
\begin{aligned}
& y_{p}=\int_{0}^{t} q(\tau) e^{-k(t-\tau)} d \tau \\
& y_{p}=q(t) * e^{-k t} .
\end{aligned}
$$

Now we observe that the solution is the convolution of the input $q(t)$ with $e^{-k t}$, which is the solution to the corresponding homogeneous $\mathrm{DE} \dot{y}+$ $k y=$, but with IC $y(0)=1$. This is the simplest case of Green's formula, which is the analogous result for higher order linear ODE's, as we will see shortly.

3. Properties

1. Linearity: Convolution is linear. That is, for functions f_{1}, f_{2}, g and constants c_{1}, c_{2} we have

$$
\left(c_{1} f_{1}+c_{2} f_{2}\right) * g=c_{1}\left(f_{1} * g\right)+c_{2}\left(f_{2} * g\right)
$$

This follows from the exact same property for integration. This might also be called the distributive law.
2. Commutivity: $f * g=g * f$.

Proof: This follows from the change of variable $v=t-\tau$.
Limits: $\quad \tau=0^{-} \Rightarrow t-\tau=t^{+}$and $\tau=t^{+} \Rightarrow t-\tau=0^{-}$
Integral: $\quad(f * g)(t)=\int_{0^{-}}^{t^{+}} f(\tau) g(t-\tau) d \tau=\int_{0^{-}}^{t^{+}} f(t-v) g(v) d v=(g * f)(t)$
3. Associativity: $f *(g * h)=(f * g) * h$. The proof just amounts to changing the order of integration in a double integral (left as an exercise).

4. Delta Functions

We have

$$
\begin{equation*}
(\delta * f)(t)=f(t) \quad \text { and } \quad(\delta(t-a) * f)(t)=f(t-a) \tag{3}
\end{equation*}
$$

The notation for the second equation is ugly, but its meaning is clear.
We prove these formulas by direct computation. First, remember the rules of integration with delta functions: for $b>0$

$$
\int_{0^{-}}^{b} \delta(\tau) f(\tau) d \tau=f(0)
$$

The formulas follow easily for $t \geq 0$

$$
\begin{aligned}
(\delta * f)(t) & =\int_{0^{-}}^{t^{+}} \delta(\tau) * f(t-\tau) d \tau=f(t-0)=f(t) \\
(\delta(t-a) * f)(t) & =\int_{0^{-}}^{t^{+}} \delta(\tau-a) * f(t-\tau) d \tau=f(t-a)
\end{aligned}
$$

5. Convolution is a Type of Multiplication

You should think of convolution as a type of multiplication of functions. In fact, it is often referred to as the convolution product. In fact, it has the properties we associate with multiplication:

- It is commutative.
- It is associative.
- It is distributive over addition.
- It has a multiplicative identity. For ordinary multiplication, 1 is the multiplicative identity. Formula (3) shows that $\delta(t)$ is the multiplicative identity for the convolution product.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

