Convolution

Convolution product: The convolution product of two functions f(t) and g(t) is

$$(f * g)(t) = \int_{0^{-}}^{t^{+}} f(t - \tau)g(\tau) d\tau.$$

This is also a function. We define it only for t > 0.

Assertion: Suppose that w(t) is the unit impulse response for the operator p(D). Let q(t) be a (perhaps generalized) function. Then the solution to p(D)x = q(t) with rest initial conditions is given (on t > 0) by w(t) * q(t).

1. (a) Compute t * 1. More generally, compute (q * 1)(t) in terms of q = q(t).

(b) Compute 1 * t. More generally, compute (1 * q)(t) in terms of q = q(t).

Your answers should be related. What general property of the convolution product does this reflect?

2. What is the differential operator p(D) whose unit impulse response is the unit step function u = u(t)?

In **1(b)** you computed 1 * q = u * q. Is the Assertion in the box in the beginning of this Session true in this case?

3. (a) Assume that f(t) is continuous at t = a. What meaning should we give to the product $f(t)\delta(t-a)$?

(b) Assume that f(t) is continuous and that f(t) vanishes for t < 0. Let *a* be a nonnegative constant. Explain why $f(t) * \delta(t - a) = f(t - a)$.

With a = 0, this shows that $\delta(t)$ serves as a "unit" for the convolution product.

4. (a) Verify that $\frac{1}{\omega_n} \sin(\omega_n t) u(t)$ is the unit impulse response of $D^2 + \omega_n^2 I$.

(b) Find the solution to $\ddot{x} + x = \sin t$ with initial conditions $x(0) = \dot{x}(0) = 0$, using the ERF/resonance.

(c) By the Assertion, $\sin t * \sin t$ should match the solution found in (b) for t > 0. Verify this by computing $\sin t * \sin t$ directly. (Hint: $\sin(t - \tau) = \sin t \cos \tau - \cos t \sin \tau$.)

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.