18.03SC Practice Problems 26

Convolution

Convolution product: The convolution product of two functions $f(t)$ and $g(t)$ is

$$
(f * g)(t)=\int_{0^{-}}^{t^{+}} f(t-\tau) g(\tau) d \tau
$$

This is also a function. We define it only for $t>0$.
Assertion: Suppose that $w(t)$ is the unit impulse response for the operator $p(D)$. Let $q(t)$ be a (perhaps generalized) function. Then the solution to $p(D) x=q(t)$ with rest initial conditions is given (on $t>0)$ by $w(t) * q(t)$.

1. (a) Compute $t * 1$. More generally, compute $(q * 1)(t)$ in terms of $q=q(t)$.
(b) Compute $1 * t$. More generally, compute $(1 * q)(t)$ in terms of $q=q(t)$.

Your answers should be related. What general property of the convolution product does this reflect?
2. What is the differential operator $p(D)$ whose unit impulse response is the unit step function $u=u(t)$?
In 1(b) you computed $1 * q=u * q$. Is the Assertion in the box in the beginning of this Session true in this case?
3. (a) Assume that $f(t)$ is continuous at $t=a$. What meaning should we give to the product $f(t) \delta(t-a)$?
(b) Assume that $f(t)$ is continuous and that $f(t)$ vanishes for $t<0$. Let a be a nonnegative constant. Explain why $f(t) * \delta(t-a)=f(t-a)$.

With $a=0$, this shows that $\delta(t)$ serves as a "unit" for the convolution product.
4. (a) Verify that $\frac{1}{\omega_{n}} \sin \left(\omega_{n} t\right) u(t)$ is the unit impulse response of $D^{2}+\omega_{n}^{2} I$.
(b) Find the solution to $\ddot{x}+x=\sin t$ with initial conditions $x(0)=\dot{x}(0)=0$, using the ERF/resonance.
(c) By the Assertion, $\sin t * \sin t$ should match the solution found in (b) for $t>$ 0 . Verify this by computing $\sin t * \sin t$ directly. (Hint: $\sin (t-\tau)=\sin t \cos \tau-$ $\cos t \sin \tau$.)

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

