Solutions to Polynomial Input 2

Quiz: Which of the following are true about the differential equation $3 x^{(4)}+2 x^{(3)}+x^{\prime \prime}=2 t^{2}+1$?

Choices:

a) It has no polynomial solutions.
b) It has exactly one polynomial solution.
c) It has many polynomial solutions.
d) All its solutions are polynomials.
e) We can't say from the information given.

Answer: The answer is c.
Because the smallest derivative in the differential operator is 2 , the method of undetermined coefficients says we should look for a particular solution of the form $x_{p}=A t^{4}+B t^{3}+C t^{2}$. Therefore there is at least one polynomial solution.

But, for any D, E the function $D t+E$ is a homogenous solution. (You can see this directly or because 0 is a double root of the characteristic equation.) Thus, there a lots of polynomial solutions.

Since there are nonzero roots of the characteristic equation not every solution is a polynomial.

By the way, $x_{p}=\frac{1}{12} t^{4}-\frac{2}{3} t^{3}+\frac{3}{2} t^{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

