What Can Go Wrong

If the homogeneous $\mathrm{DE} p(\mathrm{D}) y=0$ has polynomial solutions, then the polynomial solution of the inhomogeneous $\operatorname{DE} p(D) y=q$ will be of higher degree than the degree of $q(x)$. We illustrate with an example.
Example. Solve $y^{\prime \prime}+y^{\prime}=x+1$
Try $y_{p}=A x+B \Rightarrow 0+A=x+1$-can't solve.
Problem: the constant term in $y^{\prime \prime}+a y^{\prime}+b$ is 0 .
Fix: bump all degrees up by order of lowest derivative: try $y_{p}=A x^{2}+B x$.
Substitute: $2 A+(2 A x+B)=x+1$
Equate coeff: $2 A x+(2 A+B)=x+1 \Rightarrow A=1 / 2, B=0 \Rightarrow y_{p}=\frac{1}{2} x^{2}$.
Example. $y^{\prime \prime \prime}+3 y^{\prime \prime}=x^{2}+x$
Lowest order derivative is $2 \Rightarrow$ bump up all degrees by 2. Try $y_{p}=A x^{4}+$ $B x^{3}+C x^{2} \Rightarrow(24 A x+6 B)+3\left(12 A x^{2}+6 B x+2 C\right)=x^{2}+x$.
Equate coefficients: $36 A=1,24 A+18 B=1,6 B+6 C=0$ (we'll skip the algebra).

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

