Introduction

In this section we show how to solve the constant coefficient linear ODE with polynomial input. That is,

$$
p(D) y=q(x), \quad \text { where } q(x) \text { is polynomial. }
$$

Any function can be approximated in a suitable sense by polynomial functions, and this makes polynomials an important tool. In addition the technique we will learn, called the method of undetermined coefficents, is a good example of a general class of method widely used in mathematics, which go as follows: make an intelligent guess as to the form of the solution, leaving as letters any unknowns; plug this "trial solution" into the equation to be solved; and use it to determine the unknown values. Hence the slightly inaccurate name "undetermined coefficents" in this case - no worries, they won't be undetermined for long!

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

