PROFESSOR: Hi, everyone. Welcome back. So today, we're going to take a look at homogeneous equations with constant coefficients, and specifically, the case where we have real roots. And we'll start the problem off by looking at the equation x dot dot plus 8 x dot plus 7 x equals 0 .

And we're asked to find the general solution to this differential equation. And then we also have the question, do all the solutions go to 0 as t goes to infinity? And then for part B, we're going to take a look at just the differential equation y dot equals negative $k^{*} y$. So this is the same equation that we've seen in past recitations.

And we're just going to show that we can use this method to solve this differential equation and obtain the same result. And then lastly, we're asked, or we're told that we have eight roots to an eighth-order differential equation, negative 4, negative 3 , negative 2 , negative $1,0,1,2$, and 3. And we're asked, what is the general solution. So why don't you take a moment and try and work these problems out, and l'll be back in a minute.

Hi, everyone. Welcome back. OK, so we're asked to find the general solution to x double dot plus $8 x$ dot plus $7 x$ equals 0 . And we see that this is a differential equation, it's linear, and it has constant coefficients. And whenever we have a differential equation that's linear with constant coefficients, one of the standard ways to generate the solution is to seek what sometimes mathematicians call an ansatz, but it's to try a solution of the form x is equal to a constant times e to the $\mathrm{s}^{*} \mathrm{t}$.

And if we substitute a solution n of this form, we see that taking the second derivative of this function pulls down two s's. One derivative pulls down one s. We have no derivatives here. And we also have, on each term, a factor of ctimes e to the s^{*}. And we want this to be 0 .

So specifically, ce to the s*t can't be 0 for all time. So the only way that this can hold is if s squared plus 8 s plus 7 equals 0 . So what this means is if we choose s to solve this polynomial, then x equals ce to the $\mathrm{s}^{*} \mathrm{t}$ will be the solution. And this will be the solution for any constant c .

OK, so what are the roots to this algebraic equation. Well, we can factorize it. The roots are going to be negative 7 and negative 1. And notice how this whole process has turned a differential equation into a simpler algebraic equation. So if we can solve the algebraic equation, then we can solve the differential equation.

OK, so the general solution. Well, we've just shown that we can take any constant times e to the $s^{*} t$, provided s is equal to negative 1 or negative 7 . So the general solution is going to be some constant, c_1, times e to the minus t, plus c_2, can be a different constant, e to the minus 7 t .

So notice how there's two constants in the final solution. And the reason there's two constants is because we started out with a second-order differential equation. So, in some sense, for each order of the differential equation, we always have one constant. It's almost as if for each time we integrate, we have a constant of integration. So at the end of the day, we have two constants in our general solution.

As part of part A, we're also asked for any solution to this differential equation, does the solution go to 0 as t goes to infinity? Well, the general solution has this form. So for any constant c_1 and c_2, the solution is c_1 e to the minus t plus c_2 e to the minus 7 t .

And we see that no matter what c_1 and c_2 are, this term, as t goes to infinity, is multiplied by e to the minus t, which goes to 0 . And the second term also goes to 0 . So as t goes to infinity, both e to the minus t and e to the minus 7 t both go to 0 . So that means that any constant times e to the minus t plus any constant times e to the minus 7 t must also go to 0 . So hence, x of t goes to 0 as t goes to infinity.

OK. For part B, we have the differential equation y dot equals negative $k^{*} y$. And this is the firstorder linear differential equation with constant coefficients. And we're going to use the same trick.

We let y is equal to c times e to the $s^{*} t$. And we see that the characteristic equation in this case, it's not a polynomial. It's just s, s is equal to negative k. So we get y is equal to $c e$ to the negative $k^{*} t$ is the general solution.

And this is exactly what we had in previous recitations, when we used, for example, integrating factors to solve this very same differential equation. So this just shows that we can use the same method to solve first-order linear differential equations.

OK. Now, lastly, we're given eight roots to an eighth-order differential equation. An eighthorder differential equations with constant coefficients. So I'll just write out the roots again. So we're told the roots are negative 4 , negative 3 , negative 2 , negative $1,0,1,2$, and 3 . And in general, the solution to an eighth-order differential equation whose roots to the characteristic
polynomial are negative 4 through 3 , the general solution, x of t, is going to be a constant c_1 times e to the power of the first root, which will be minus $4 t$, plus $c _2 e$ to the minus $3 t$.

And of course, we take different constants for each term. c_3 e to the minus 2 t , plus c_4 e to the minus t , plus c_5. And now for this term, it should be e to the 0t, but e to the 0 t is just 1 . So the zero root is just going to give us a constant c_5. And we have c_6 to the t, plus c_7e to the 2 t . And then plus $\mathrm{c} _8$ e to the 3 t .

So the solution has eight terms and eight constants. And just for fun, we can ask, does every solution to this differential equation go to 0 as t goes to infinity. And the answer is no. In fact, although each term with a negative root does go to zero as t goes to infinity, there are three terms that go to positive infinity as t goes to infinity, and there's one term that just stays constant. So in general, as t grows, goes to infinity, these terms will become very large and won't necessarily go to 0 . Well, they'll never go to 0 .

So I'd just like to conclude there, and l'll see you next time.

