Example

Let's apply what we just learned to a specific example. First, recall the basics. For the real homogeneous constant coefficient linear DE with sinusoidal input

$$
p(D) x=B \cos (\omega t)
$$

we have the unique real periodic solution

$$
x_{p}=B \operatorname{Re}\left(\frac{e^{i \omega t}}{p(i \omega)}\right)=\frac{B}{|p(i \omega)|} \cos (\omega t-\phi)
$$

where $\phi=\operatorname{Arg}(p(i \omega))$. In this case the complex gain is $\frac{1}{p(i \omega)}$, and the phase lag is $\phi=\operatorname{Arg}(p(i \omega))$.

Example. Find the periodic solution to

$$
x^{\prime \prime}+x^{\prime}+2 x=\cos t
$$

Solution. $p(s)=s^{2}+s+2, \omega=1, B=1$.
$p(i \omega)=p(i)=i^{2}+i+2=-1+i+2=1+i|1+i| e^{i \phi}=\sqrt{2} e^{\frac{i \pi}{4}}$,
since $\phi=\operatorname{Arg}(1+i)=\tan ^{-1}(1 / 1)=\frac{\pi}{4}$.
Thus, Complex gain $=\frac{1}{p(i)}=\frac{1}{1+i}$.
Gain $=\frac{1}{|p(i)|}=\frac{1}{\sqrt{2}}$.
Phase lag $=\phi=\operatorname{Arg}(p(i))=\frac{\pi}{4}$.
Periodic solution $=x_{p}=\frac{1}{\sqrt{2}} \cos \left(t-\frac{\pi}{4}\right)$.
Looking at the output x_{p} in relation to the input signal we see $q(t)=\cos t$. The amplitude of $x_{p}=\frac{1}{\sqrt{2}} \times$ amplitude of q so the gain is $\frac{1}{\sqrt{2}}$. We also see that x_{p} lags behind q by $\pi / 4$ radians, so the phase $\operatorname{lag} \phi=\frac{\pi}{4}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

