The Sinusoidal Identity

The sum of two sinusoidal functions of the same frequency is another sinusoidal function with that frequency! For any real constants a and b,

$$
\begin{equation*}
a \cos (\omega t)+b \sin (\omega t)=A \cos (\omega t-\phi) \tag{1}
\end{equation*}
$$

where A and ϕ can be described in at least two ways:

$$
\begin{gather*}
A=\sqrt{a^{2}+b^{2}}, \quad \phi=\tan ^{-1} \frac{b}{a} ; \tag{2}\\
a+b i=A e^{i \phi} . \tag{3}
\end{gather*}
$$

Conversely, we have

$$
\begin{equation*}
a=A \cos (\phi) \text { and } b=A \sin (\phi) . \tag{4}
\end{equation*}
$$

Geometrically this is summarized by the triangle in the figure below.

Fig. 1. $a+b i=A e^{i \phi}$.
One proof of (1) is a simple application of the cosine addition formula

$$
\cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)
$$

We will now give an equivalent proof using Euler's formula and complex arithmetic: The triangle in Figure 1 is the standard polar coordinates triangle. It shows $a+i b=A e^{i \phi}$ or $a-i b=A e^{-i \phi}$. Thus

$$
\begin{aligned}
A \cos (\omega t-\phi) & =\operatorname{Re}\left(A e^{i(\omega t-\phi)}\right) \\
& =\operatorname{Re}\left(e^{i \omega t} \cdot A e^{-i \phi}\right) \\
& =\operatorname{Re}((\cos (\omega t)+i \sin (\omega t)) \cdot(a-i b)) \\
& =\operatorname{Re}(a \cos (\omega t)+b \sin (\omega t)+i(a \sin (\omega t)-b \cos (\omega t))) \\
& =a \cos (\omega t)+b \sin (\omega t)
\end{aligned}
$$

We should stress the importance of the trigonometric identity (1). It shows that any linear combination of $\cos (\omega t)$ and $\sin (\omega t)$ is not only periodic of
period $\frac{2 \pi}{\omega}$, but is also sinusoidal. If you try to add $\cos (\omega t)$ to $\sin (\omega t)$ "by hand", you will probably agree that this is not at all obvious.

We will call $A \cos (\omega t-\phi)$ amplitude-phase form and $a \cos (\omega t)+b \sin (\omega t)$ rectangular or Cartesian form. You should be familiar with amplitudephase form; we usually prefer it because both amplitude and phase have geometric and physical meaning for us.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations] [

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

