Sinusoidal Functions

1. Definitions

A sinusoidal function (or sinusoidal oscillation or sinusoidal signal) is one that can be wrtten in the form

$$
\begin{equation*}
f(t)=A \cos (\omega t-\phi) \tag{1}
\end{equation*}
$$

The function $f(t)$ is a cosine function which has been amplified by A, shifted by ϕ / ω, and compressed by ω.

- $A>0$ is its amplitude: how high the graph of $f(t)$ rises above the t-axis at its maximum values;
- ϕ is its phase lag: the value of ωt for which the graph has its maximum (if $\phi=0$, the graph has the position of $\cos (\omega t)$; if $\phi=\pi / 2$, it has the position of $\sin (\omega t)$);
- $\tau=\phi / \omega$ is its time delay or time lag: how far along the t-axis the graph of $\cos (\omega t)$ has been shifted to make the graph of (1); (to see this, write $A \cos (\omega t-\phi)=A \cos (\omega(t-\phi / \omega)))$
- ω is its angular frequency: the number of complete oscillations $f(t)$ makes in a time interval of length 2π; that is, the number of radians per unit time;
- $v=\omega / 2 \pi$ is the frequency of $f(t)$: the number of complete oscillations the graph makes in a time interval of length 1 ; that is, the number of cycles per unit time;
- $P=2 \pi / \omega=1 / v$ is its period, the t-interval required for one complete oscillation.

One can also write (1) using the time $\operatorname{lag} \tau=\phi / \omega$

$$
f(t)=A \cos (\omega(t-\tau))
$$

2. Discussion

Here are the instructions for building the graph of (1) from the graph of $\cos (t)$. First scale, or vertically stretch, $\cos (t)$ by a factor of A; then shift the
result to the right by ϕ units (if $\phi<0$ the shift will actually be to the left); and finally scale it horizontally by a factor of $1 / \omega$.

In the figure below the dotted curve is $\cos (t)$ and the solid curve is $2.5 \cos (\pi t-\pi / 2)$. The solid curve has

$$
A=2.5, \quad \omega=\pi, \quad \phi=\pi / 2, \quad \tau=1 / 2 .
$$

Vertically, the solid curve is 2.5 times the dotted one. Horizontally, the solid curve it $1 / \pi$ times the dotted one. (The dotted curve takes 2π units of time to go through one cycle and the solid curve takes only 2 units of time.) The solid curve hits its first maximum at $t=1 / 2$, i.e. at the $t=\tau$, the time lag.

$$
\text { time } \operatorname{lag} \tau=1 / 2 \quad \text { one period }=2
$$

one period $=2 \pi$
Fig. 1. Features of the graph of a sinusoid.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations] [

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

