18.03SC Practice Problems 7

Sinusoids

Solution Suggestions

1. Write each of the following functions (of t) in the form $A \cos (\omega t-\phi)$. In each case, begin by drawing a right triangle with sides a and b.
(a) $\cos (2 t)+\sin (2 t)$.
(b) $\cos (\pi t)-\sqrt{3} \sin (\pi t)$.
(c) $\operatorname{Re} \frac{e^{i t}}{2+2 i}$.

Recall the geometric derivation of the general sinusoid formula

$$
a \cos (\omega t)+b \sin (\omega t)=\overline{(a, b)} \cdot \overline{(\cos (\omega t), \sin (\omega t))}=\sqrt{a^{2}+b^{2}} \cos (\omega t-\phi)
$$

where ϕ is the angle of the first vector. This is where the triangle comes in - we will draw the vector of coefficients to determine its magnitude and direction. (Equivalently, we are determining the polar coordinates of the complex number $a+b i$.)
(a) $\cos (2 t)+\sin (2 t):(a, b)=(1,1)$.

Here, the right triangle has hypotenuse $\sqrt{1+1}=\sqrt{2}$, so $A=\sqrt{2}$. Both summands have angular frequency 2 , so $\omega=2 . \phi$ is the angle of the triangle, which is $\pi / 4$, so $\cos (2 t)+\sin (2 t)=\sqrt{ } 2 \cos (2 t-\pi / 4)$.
(b) $\cos (\pi t)-\sqrt{3} \sin (\pi t):(a, b)=(1,-\sqrt{3})$.

This right triangle has hypotenuse $\sqrt{1^{2}+(-\sqrt{3})^{2}}=2$ and angle $-\pi / 3$. So $\cos (\pi t)-$ $\sqrt{3} \sin (\pi t)=2 \cos (\pi t-(-\pi / 3))=2 \cos (\pi t+\pi / 3)$.
(c) $e^{i t}=\cos (t)+i \sin (t)$ and $\frac{1}{2+2 i}=\frac{1}{2+2 i} \cdot \frac{2-2 i}{2-2 i}=\frac{2-2 i}{2^{2}+2^{2}}=\frac{1-i}{4}$. Multiply out and take the real part of the product to obtain $\operatorname{Re} \frac{e^{i t}}{2+2 i}=\frac{1}{4} \cos (t)+\frac{1}{4} \sin (t)$.
For $\frac{1}{4} \cos (t)+\frac{1}{4} \sin (t),(a, b)=\left(\frac{1}{4}, \frac{1}{4}\right)$, which gives the same triangle as in (a), except scaled by $1 / 4$.
So $\operatorname{Re} \frac{e^{i t}}{2+2 i}=\frac{1}{4} \cos (t)+\frac{1}{4} \sin (t)=\frac{\sqrt{2}}{4} \cos (t-\pi / 4)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations] [

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

