Part I Problems and Solutions

Problem 1: Write each of the following functions f(t) in the form $A \cos(\omega t - \phi)$. In each case, begin by drawing a right triangle.

- a) $2\cos(3t) + 2\sin(3t)$
- b) $\sqrt{3}\cos(\pi t) \sin(\pi t)$
- c) $\cos(t \frac{\pi}{8}) + \sin(t \frac{\pi}{8})$

Solution: a) Here, our right triangle has hypotenuse $2\sqrt{2}$, so $A = 2\sqrt{2}$. Both summands have circular frequency 3, so $\omega = 3$. ϕ is the argument of the hypotenuse, which is $\pi/4$, so $f(t) = 2\sqrt{2}\cos(3t - \pi/4)$.

b) The right triangle has hypotenuse of length $\sqrt{(\sqrt{3})^2 + (-1)^2)} = 2$. The circular frequency of both summands is π , so $\omega = \pi$. The argument of the hypotenuse is $-\pi/6$, so $f(t) = 2\cos(\pi t + \pi/6)$.

c) Similar to (a), with 3*t* replaced by $t - \pi/8$:

$$f(t) = \sqrt{2}\cos(t - \pi/8 - \pi/4) = \sqrt{2}\cos(t - \frac{3\pi}{8})$$

Problem 2: Find $\int e^{2x} \sin x \, dx$ by using complex exponentials.

Solution:

$$e^{(2+i)x} = e^{2x}(\cos x + i\sin x)$$

$$e^{2x}\sin x = \operatorname{Im} e^{(2+i)x}$$

$$\int e^{(2+i)x} dx = \frac{1}{2+i} e^{(2+i)x}$$

$$= \frac{2-i}{5} \left(e^{2x}\cos x + ie^{2x}\sin x \right)$$

We want just the imaginary part; multiplying out and collecting the coefficient of i then gives

$$\int e^{2x} \sin x \, dx = e^{2x} \left(\frac{2}{5} \sin x - \frac{1}{5} \cos x\right)$$

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.