Part I Problems and Solutions

Problem 1: Write each of the following functions $f(t)$ in the form $A \cos (\omega t-\phi)$. In each case, begin by drawing a right triangle.
a) $2 \cos (3 t)+2 \sin (3 t)$
b) $\sqrt{3} \cos (\pi t)-\sin (\pi t)$
c) $\cos \left(t-\frac{\pi}{8}\right)+\sin \left(t-\frac{\pi}{8}\right)$

Solution: a) Here, our right triangle has hypotenuse $2 \sqrt{2}$, so $A=2 \sqrt{2}$. Both summands have circular frequency 3 , so $\omega=3 . \phi$ is the argument of the hypotenuse, which is $\pi / 4$, so $f(t)=2 \sqrt{2} \cos (3 t-\pi / 4)$.
b) The right triangle has hypotenuse of length $\sqrt{\left.(\sqrt{3})^{2}+(-1)^{2}\right)}=2$. The circular frequency of both summands is π, so $\omega=\pi$. The argument of the hypotenuse is $-\pi / 6$, so $f(t)=2 \cos (\pi t+\pi / 6)$.
c) Similar to (a), with $3 t$ replaced by $t-\pi / 8$:

$$
f(t)=\sqrt{2} \cos (t-\pi / 8-\pi / 4)=\sqrt{2} \cos \left(t-\frac{3 \pi}{8}\right) .
$$

Problem 2: Find $\int e^{2 x} \sin x d x$ by using complex exponentials.

Solution:

$$
\begin{aligned}
e^{(2+i) x} & =e^{2 x}(\cos x+i \sin x) \\
e^{2 x} \sin x & =\operatorname{Im} e^{(2+i) x} \\
\int e^{(2+i) x} d x & =\frac{1}{2+i} e^{(2+i) x} \\
& =\frac{2-i}{5}\left(e^{2 x} \cos x+i e^{2 x} \sin x\right)
\end{aligned}
$$

We want just the imaginary part; multiplying out and collecting the coefficient of i then gives

$$
\int e^{2 x} \sin x d x=e^{2 x}\left(\frac{2}{5} \sin x-\frac{1}{5} \cos x\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

