Part II Problems and Solutions

Problem 1: [Euler's method] (a) Write y for the solution to $y^{\prime}=2 x$ with $y(0)=0$. What is $y(1)$? What is the Euler approximation for $y(1)$, using 2 equal steps? 3 equal steps? What about n steps, where n can now be any natural number? (It will be useful to know that $1+2+\cdots+(n-1)=n(n-1) / 2$.) As $n \rightarrow \infty$, these approximations should converge to $y(1)$. Do they?
(b) In the text and in class it was claimed that for small h, Euler's method for stepsize h has an error which is at most proportional to h. The n-step approximation for $y(1)$ has $h=1 / n$. What is the exact value of the difference between $y(1)$ and the n-step Euler approximation? Does this conform to the prediction?

Solution: $y=x^{2}$, so $y(1)=1$.
Euler's method with stepsize h for this equation: $x_{k}=k h, y_{k+1}=y_{k}+2 x_{k} h$.

With $n=2, h=1 / 2$:

With $n=3, h=1 / 3$:

k	x_{k}	y_{k}	$m_{k}=-y_{k}$	$h m_{k}$
0	0	0	0	0
1	$1 / 2$	0	1	$1 / 2$
2	1	$1 / 2$		

k	x_{k}	y_{k}	$m_{k}=-y_{k}$	$h m_{k}$
0	0	0	0	0
1	$1 / 3$	0	$2 / 3$	$2 / 9$
2	$2 / 3$	$2 / 9$	$4 / 3$	$4 / 9$
3	1	$2 / 3$		

With n arbitrary, $h=1 / n$:

k	x_{k}	y_{k}	$m_{k}=2 x_{k}$	$m_{k} h$
0	0	0	0	0
1	h	0	$2 h$	$2 h^{2}$
2	$2 h$	$2 h^{2}$	$4 h$	$4 h^{2}$
3	$3 h$	$2 h^{2}+4 h^{2}$	$6 h$	$6 h^{2}$
4	$4 h$	$2 h^{2}+4 h^{2}+6 h^{2}$	$8 h$	$8 h^{2}$
\vdots	\vdots	\vdots	\vdots	\vdots

So $y_{n}=2(1+2+\cdots+(n-1)) h^{2}=n(n-1) h^{2}$. With $h=1 / n$ this gives our estimate for $y(1): n(n-1) / n^{2}=(n-1) / n$. The limit of this as $n \rightarrow \infty$ is 1 , which is good, and the error is $1 / n$, which is exactly h.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

