MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Recitation: May 14, 2009

1. Study the phase portraits of the systems

$$
\binom{x}{y}^{\prime}=\left(\begin{array}{cc}
1 & \epsilon \\
1 & -1
\end{array}\right)\binom{x}{y}
$$

and

$$
\binom{x}{y}^{\prime}=\left(\begin{array}{ll}
0 & -1 \\
\epsilon & -1
\end{array}\right)\binom{x}{y}
$$

2. Consider

$$
x^{\prime}=y-x\left(x^{2}+y^{2}\right), \quad y^{\prime}=-x-y\left(x^{2}+y^{2}\right) .
$$

(a) Find the critical point.
(b) Determined the stability of the linear approximation at $(0,0)$.
(c) Determined the stability of $(0,0)$.
(d) Repeat for

$$
x^{\prime}=y+x\left(x^{2}+y^{2}\right), \quad y^{\prime}=-x-y\left(x^{2}+y^{2}\right) .
$$

3. In the competitive system

$$
x^{\prime}=x(k-a x-b y), \quad y^{\prime}=y(m-c x-d y), \quad k, m, a, b, c, d>0
$$

if the lines $a x+b y=k$ and $c x+d y=m$ do not intersect in the first quadrangle $x, y>0$ find the limit set.
4. If $(x(t), y(t))$ is a solution of the predator-prey equations

$$
x^{\prime}=x(-k+b y), \quad y^{\prime}=y(m-c x), \quad k, m, b, c>0
$$

of period $T>0$, show that

$$
\frac{1}{T} \int_{0}^{T} x(t) d t=\frac{m}{c}, \quad \frac{1}{T} \int_{0}^{T} y(t) d t=\frac{k}{b}
$$

5. (a) Show that the differential equation

$$
x^{\prime \prime}+\left(x^{2}+2\left(x^{\prime}\right)^{2}-1\right) x^{\prime}+x=0
$$

has a nontrivial periodic solution.
(b) Show that the system of differential equations

$$
x^{\prime}=x+y^{2}+x^{3}, \quad y^{\prime}=-x+y+y x^{2}
$$

has no nontrivial periodic solution.

