MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Recitation: April 16th, 2009

1. Suppose A is an $n \times n$ matrix and $\mathbf{y}_{1}(t), \mathbf{y}_{2}(t), \ldots \mathbf{y}_{n}(t)$ are solutions to $\mathbf{y}^{\prime}=A \mathbf{y}$. Show that the set if $\left\{\mathbf{y}_{i}\left(t_{0}\right)\right\}_{i=1}^{n}$ is linearly independent at some time t_{0}, then to any other solution $\mathbf{y}(t)$ there correspond constants c_{i} so that $\mathbf{y}(t)=c_{1} \mathbf{y}_{1}(t)+c_{2} \mathbf{y}_{2}(t)+\ldots+c_{n} \mathbf{y}_{n}(t)$ (i.e., the set $\left\{\mathbf{y}_{i}(t)\right\}_{i=1}^{n}$ constitutes a basis of solutions).
2. Let A be an $n \times n$ matrix.
(a) Suppose \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of A corresponding to the eigenvalues λ_{1} and λ_{2}, respectively. If $\lambda_{1} \neq \lambda_{2}$, show that \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.
(b) Assume now that $n=2$. If $p_{A}(\lambda)=\left(\lambda-\lambda_{1}\right)^{2}$, show that either $A=\lambda_{1} I$, or there is a unique eigenvector \mathbf{v}_{1} associated to λ_{1} and a vector \mathbf{v}_{2} satisfying $\left(A-\lambda_{1}\right) \mathbf{v}_{2}=\mathbf{v}_{1}$.
(c) For A as in the latter alternative in (2), show that the general solution to

$$
\frac{d}{d t} \mathbf{y}=A \mathbf{y}
$$

is given by $\mathbf{y}=e^{\lambda_{1} t}\left(c_{1} t+c_{2}\right) \mathbf{v}_{1}+c_{1} e^{\lambda_{1} t} \mathbf{v}_{2}$.
3. For the system

$$
y_{1}^{\prime}=3 y_{1}+2 y_{2}, \quad y_{2}^{\prime}=-2 y_{1}-y_{2},
$$

find the unique fundamental matrix $U(t)$ satisfying $U(0)=I$.
4. Under what conditions on the trace and determinant of the 2×2 matrix A will all solutions to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$ satisfy $\lim _{t \rightarrow \infty}|\mathbf{y}(t)|=0$?

