18.034 Honors Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Recitation: April 16th, 2009

- Suppose A is an n×n matrix and y₁(t), y₂(t),...y_n(t) are solutions to y' = Ay. Show that the set if {y_i(t₀)}ⁿ_{i=1} is linearly independent at some time t₀, then to any other solution y(t) there correspond constants c_i so that y(t) = c₁y₁(t) + c₂y₂(t) + ... + c_ny_n(t) (i.e., the set {y_i(t)}ⁿ_{i=1} constitutes a basis of solutions).
- 2. Let A be an $n \times n$ matrix.
 - (a) Suppose \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of A corresponding to the eigenvalues λ_1 and λ_2 , respectively. If $\lambda_1 \neq \lambda_2$, show that \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.
 - (b) Assume now that n = 2. If $p_A(\lambda) = (\lambda \lambda_1)^2$, show that either $A = \lambda_1 I$, or there is a unique eigenvector \mathbf{v}_1 associated to λ_1 and a vector \mathbf{v}_2 satisfying $(A \lambda_1)\mathbf{v}_2 = \mathbf{v}_1$.
 - (c) For A as in the latter alternative in (2), show that the general solution to

$$\frac{d}{dt}\mathbf{y} = A\mathbf{y}$$

is given by $\mathbf{y} = e^{\lambda_1 t} (c_1 t + c_2) \mathbf{v}_1 + c_1 e^{\lambda_1 t} \mathbf{v}_2.$

3. For the system

$$y_1' = 3y_1 + 2y_2, \quad y_2' = -2y_1 - y_2,$$

find the unique fundamental matrix U(t) satisfying U(0) = I.

4. Under what conditions on the trace and determinant of the 2 × 2 matrix A will all solutions to the equation $\mathbf{y}' = A\mathbf{y}$ satisfy $\lim_{t\to\infty} |\mathbf{y}(t)| = 0$?