MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Recitation: March 12th, 2009

1. Find the general solution to the following equations via an explicit variation of parameters procedure.
(a) $y^{\prime \prime}+y=1$
(b) $x y^{\prime \prime}-y^{\prime}=1$.
(Hint: In the first case, consider $y=a(x) \sin x+b(x) \cos x=1$, in the second, $y=a(x)+b(x) x^{2}$.)
2. (Birkhoff-Rota, p. 62, \#3)

Solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=x^{3}
$$

for the initial conditions $y^{\prime}(0)=y(0)=0$.
3. (Birkhoff-Rota, p. $62, \# 5 \mathrm{~d})$

Construct a Green's function for the initial-value problem associated to the ODE

$$
x^{2} u^{\prime \prime}-\left(x^{2}+2 x\right) u^{\prime}+(x+2) u=0 .
$$

Hint: $u(x)=x$ is a solution.
4. (Birkhoff-Rota, p. 63, \#8) Show that, if $q(t)<0$, the Green's function $G(t, \tau)$ for the initial-value problem associated to $u^{\prime \prime}+q(t) u=0$ is positive and convex upward for $t>\tau$.
5. (Birkhoff-Rota, \#5, p. 82)

Show that every linear differential operator L with constant real coefficients can be factored as $L=A L_{1} \circ L_{2} \circ \cdots \circ L_{m}$ where $A \in \mathbb{R}$ and $L_{i}=D_{i}+b_{i}$ or $L_{i}=D^{2}+p_{i} D+q_{i}$.

