18.034 Honors Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Recitation: March 10th, 2009

- 1. Let $I \subset \mathbb{R}$ be an interval and recall that a function $f: I \to \mathbb{R}$ is said to be Lipschitz on I if there is a constant C such that $|f(x) - f(y)| \leq C|x - y|$ for all $x, y \in I$.
 - (a) Show that if f is Lipschitz on I, then $f \in C(I)$.
 - (b) Show that if f is differentiable on I with bounded derivative, then f is Lipschitz on I.
 - (c) Show that f(x) = |x| is Lipschitz on \mathbb{R} .
 - (d) Show that $f(x) = e^x$ is not Lipschitz on \mathbb{R} .
- 2. (Birkhoff-Rota, p. 62, #3)

Solve

$$y'' + 3y' + 2y = x^3$$

for the initial conditions y'(0) = y(0) = 0.

3. (Birkhoff-Rota, p. 62, #4)

Show that any second-order linear inhomogeneous equation that has both x^2 and $\sin^2 x$ as solutions must have a singular point at the origin.

4. Describe the dominant behavior as $t \to \infty$ of any solution u to

$$(D+3)(D^2+1)^5 u = 640\cos t.$$

Hint: the function

$$U_0(t) = \frac{t^5}{5!} (6\sin t - 2\cos t)$$

solves the equation.