MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Recitation: March 5th, 2009

1. (Birkhoff-Rota, $\# 2,3$, p. 75) Find a basis of real solutions to the ODE
(a) $u^{\prime \prime \prime}-u$,
(b) $u^{(I V)}=u$.
2. (Birkhoff-Rota, \#2, p.82)

Find a constant coefficient linear operator L such that $e^{-t}, t e^{-t}$, and e^{t} are a basis of solutions for the ODE $L[u]=0$. Then find bases for the second- and third-order ODE $L^{2}[u]=0$ and $L^{3}[u]=0$.
3. (Birkhoff-Rota, \#4, p. 82)

Knowing bases of solutions for $L_{1}[u]=0$ and $L_{2}[u]=0$, find a basis of solutions for $\left(L_{1} \circ L_{2}\right)[u]=0$.
4. (Birkhoff-Rota, \#5, p. 82)

Show that every linear differential operator L with constant real coefficients can be factored as $L=A L_{1} \circ L_{2} \circ \cdots \circ L_{m}$ where $A \in \mathbb{R}$ and $L_{i}=D_{i}+b_{i}$ or $L_{i}=D^{2}+p_{i} D+q_{i}$.
5. (Birkhoff-Rota, \#8, p. 82)

Prove that $u^{\prime \prime}+2 i u^{\prime}+3 u=0$ has no non-trivial real solution.

