MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Recitation: February 26th, 2009

1. Under what conditions on b and k do all solutions $y(t)$ to

$$
y^{\prime \prime}+b y^{\prime}+k y=0
$$

tend to zero as $t \rightarrow \infty$? What is the physical significance of these conditions for a spring system?
2. Let u and v be continuous and linearly independent on an interval I. Suppose w is a function on I with only finitely many zeros.
(a) Show that $w u$ and $w v$ are linearly independent on I.
(b) You can't use the Wronskian in this problem. Why not?
(c) Show that the result can fail if u and v are not continuous.
3. Show that e^{t}, e^{-t}, and $e^{2 t}$ are linearly independent on \mathbb{R} without using the Wronskian.
4. Show that a function y satisfying

$$
e^{x} y^{\prime \prime}+(\sin x) y^{\prime}-(1+x) y \geq 0, \quad y(0) \geq 0, y^{\prime}(0)>0
$$

must be strictly increasing.
5. Consider the problem

$$
w^{\prime \prime}+\lambda q w=0, \quad w(a)=w(b)=0
$$

where $\lambda \in \mathbb{R}$ and $q=q(x)$ is a positive function of x. Show that there are no non-trivial solutions if $\lambda<0$.

